
Inter-Task Register-Allocation for Static Operating Systems

Volker Barthelmann
Department of Computer Science II

Universität Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen, Germany

volker.barthelmann@informatik.uni-erlangen.de

ABSTRACT
In recent years, a growing number of small single-chip em-
bedded systems are used in very high volumes, for example
in the automotive industry. Due to the high volumes, these
systems are very cost-sensitive. This is one of several reasons
why they are more and more using static operating systems.
In such systems, all system resources are configured offline
and an optimized kernel is generated which is tailored to one
specific application.

While this allows the use of operating systems for small
ECUs with only very few KB of RAM, it is observed that the
memory needed to store task contexts (i.e. register sets) in
case of task preemptions makes up a significant part of the
RAM needed by the operating system (especially on chips
with large register files).

This paper presents ideas and a first implementation on
methods to reduce this space through interaction of the com-
piler and the operating system generation. Together they
can calculate an upper bound for the register set that has
to be stored for each task. Also, the scope for the register
allocator of the compiler can be extended to allocate regis-
ters across tasks in order to minimize the total size of RAM
needed for task contexts.

Categories and Subject Descriptors
D.3.4 [Programming languages]: Processors—Com-

pilers, Optimization, Run-time environments; D.4.7
[Operating Systems]: Organization and Design—Real-

time systems and embedded systems

General Terms
Performance

Keywords
register allocation, context-switch optimization, optimizing
for space

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’02–SCOPES’02, June 19-21, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-527-0/02/0006 ...$5.00.

1. BACKGROUND
In recent years there has been a rapidly growing num-

ber of small embedded systems used in very high volumes.
One example is the automotive industry where the number
of Electronic Control Units (ECU) in a single car is ap-
proaching 100 for high end automobiles and several dozen
in mid-range cars. Another domain is the emerging area of
wearable computing which may produce very small systems
in high volume.

Typically system-on-chip microcontrollers are used which
contain the CPU, peripherals, ROM and RAM on a single
chip. ROM sizes of a few hundred KB and RAM sizes of a
few KB are common.

Not very long ago, these small systems were typically pro-
grammed in assembly language using no operating systems.
In recent years, however, high level languages are often be-
ing used for such systems and the use of operating systems
is getting more common.

As, for example, the ECUs in cars are usually connected
via several bus systems and have to co-operate, a common
communication layer provided with the operating systems is
a big benefit. Also, using the standard features of well-tested
operating systems seems to promise more stable systems and
shorten development times as application programmers do
not have to “re-invent the wheel”.

Use of high level languages and operating systems also sig-
nificantly reduces the amount of work necessary to port an
application from one chip or architecture to another. There-
fore, chips can be chosen more freely — an important benefit
in volume production where every penny counts.

2. STATIC OPERATING SYSTEMS
Classical operating systems are not well suited for such

systems due to several reasons. The most important reason
is the high memory requirement. Another problem is the
danger of fragmentation or memory leaks. Many ECUs are
safety-critical and the risk of failure to allocate a system re-
source due to lack of RAM or memory fragmentation cannot
be tolerated.

Static operating systems help to avoid these problems. In
such operating systems all system resources like tasks, mes-
sages, mutexes etc. used by the application are configured
statically using an offline tool. After verifying validity, a
kernel is generated which is specially optimized to this very
application.

All resources needed by the operating system are statically
allocated during generation time and therefore no dynamic
memory management is needed. By using this mechanism it

is ensured that allocating an operating system resource can
never fail!

As all resources used by the application are known when
the kernel is generated, it is possible to produce a very small
optimized kernel. Functionality not needed by this appli-
cation can automatically be omitted, and the size of data
structures can be reduced. For example, the data type for
a task ID can be a single byte index into different arrays
rather than a pointer to a task control block as used in
many systems.

This can make a big difference for very small systems and
also helps putting all constant data into ROM rather than
into RAM.

These benefits of static operating systems allow them to
be used in very small systems (e.g. 8bit microcontrollers
with 32KB ROM and 1KB RAM) and still leave enough
room for the application.

The market of static operating systems is currently domi-
nated by systems conforming to the OSEK specification [16].
This is an open standard (which is currently in the process
of ISO standardisation) created by the automotive industry.
OSEK is not a certain implementation but it specifies the
behaviour and services of operating systems. Several ven-
dors offer OSEK compliant operating systems, and ECUs
running such OSEK implementations are used in production
cars. A standard file format (OIL – OSEK Implementation
Language) is used to specify tasks, scheduling properties and
all other operating system resources used by the application.

3. TASK CONTEXTS
While it is possible to use only very few bytes of RAM

for most operating system resources, it turns out that the
memory needed to store task contexts often makes up the
biggest part of RAM usage by the operating system.

When a task is preempted and the operating system
switches to another task, it has to store all information
needed to switch back to the preempted task later on. Clas-
sically this means to store the entire register set of the pro-
cessor which is available to applications. Interrupt service
routines can be viewed similarly as tasks in this respect.

The following microcontrollers used in volume production
in cars illustrate that the task contexts can use a significant
amount of available RAM (consider that 20 – 30 tasks and
interrupt service routines are common figures):

• Motorola MPC555 [15]
26KB RAM
32 general-purpose-registers (32bit)
32 floating-point-registers (64bit)
⇒ task context ca. 384 Bytes

• Infineon C164CI [14]
2KB RAM
16 general-purpose-registers (16bit)
⇒ task context ca. 32 Bytes

As mentioned above, these chips are actually used in high-
volume production with static operating systems. While
there are still many small microcontrollers using an accumu-
lator architecture offering only two or three registers, even
8bit architectures are starting to use large register sets in
order to better suit compiler-generated code:

• Atmel AVR [12]
128 Bytes – 4KB RAM

32 general-purpose-register (8bit)
⇒ task context ca. 32 Bytes

It can be observed that new architectures (even smallest
ones) tend to have many registers. This trend will probably
hold on (see [6]) and in some areas processors with even
larger register sets are used (e.g. 128 registers, see [17]).
When storing a large register set, it is not unlikely to save
registers which do not (and maybe can not) contain a live
value or are not modified by the preempting tasks.

Many embedded systems have a relatively large number of
event-triggered real-time tasks or interrupt service routines
which execute only very small pieces of code (e.g. fetching a
value from a bus). Compiler optimizations which use a lot of
registers (inlining, unrolling, software-pipelining) are rarely
used as they often increase code size. Therefore, a large part
of the tasks may use only a small part of the register set.

As a result, many systems actually waste valuable RAM
for task contexts which could be optimized. Imagine a CPU
with 1000 registers: Using conventional techniques, it would
need a lot of extra RAM for task-contexts although it might
in fact never be necessary to store any registers at all during
to a context-switch.

4. CURRENT PRACTICE
As the size of task-contexts actually matters in practice

(a few bytes of RAM may cost millions of dollars in high
volume production), there are already a few attempts to
address this issue.

There have been several approaches to improve context-
switch times either by software or hardware. However, they
are tailored to much bigger systems and do concentrate on
speed rather than RAM usage (see e.g. [9], [1], [8]), or they
require a very specific class of applications (see e.g. [4]).

Some systems allow to specify reduced register sets for
some tasks. A common variant is an attribute to specify
that a task does not use floating-point registers. However,
this solution is neither very fine-grained nor very safe with-
out compiler support (consider compilers which use floating-
point registers for block-copy).

5. CONTEXT OPTIMIZATION
The idea proposed in this paper is to improve this sit-

uation by interaction between the compiler and the static
operating system. As the system is static and all tasks are
known at generation time, it is possible to save different
register sets for different tasks.

When a task is preempted, only registers which contain
live values and can be destroyed (by preempting tasks) have
to be saved. With knowledge on the operating system, the
compiler can determine safe bounds of register sets which
have to be stored for each task. Furthermore, changes of
register-allocation may result in smaller task-contexts with-
out sacrificing intra-task code quality.

Propagating this information back to the operating sys-
tem generator allows to allocate only as much RAM as
needed by the minimized task-contexts. Obviously, the op-
erating system code which performs context-switches will
have to be generated accordingly to save/restore different
register-sets depending on the preempted task.

For this purposes an embedded system using a static
operating system can be modelled using the set of tasks

T = {t1, ..., tn}, the register set R = {r1, ..., rm} and a set
of code blocks L = {l1, ..., lk} (see below for details).

5.1 Example
Consider the following (admittedly very small) example of

a system with three tasks. Assume fixed priority fully pre-
emptive scheduling with the task priorities given in the code.
This implies that task t1 can be interrupted by tasks t2 and
t3, task t2 can be preempted only by task t3 and task t3

is the highest priority task which can never be interrupted.
To illustrate some of the situations that can arise, task t2

contains a critical section (for example obtaining a mutex
using some kind of priority ceiling or priority inheritance
protocol) which prevents it from being preempted by task
t3 inside this critical section. Also, tasks t2 and t3 share
some code, namely the function f.

Other situations which could lead to different combina-
tions of preemptions would be tasks entering a blocked state
(for example, waiting for a semaphore). All these situations
can be formalized using an interference graph which will be
described below.

The alloc and free comments shall indicate the begin-
ning and end of register live ranges. l1 – l5 are placehold-
ers for blocks of code which do not change preemptability.
These blocks do not have to be straight-line basic blocks
but can be rather arbitrary pieces of code as long as the
preemptability does not change inside. Of course, a conser-
vative estimate could be used for an entire task, but this
could negatively affect the benefits of the optimization. Ap-
parently, this partitioning into code blocks depends on the
scheduling mechanism and system services provided by the
operating system.
r1 – r8 designate the register set. For example, r7 and

r8 could be floating-point registers (to explain why they are
used rather than r2 and r3)in task t1.

TASK(t1) /* prio=1 */
{

/* alloc r1, r7, r8 */
l1
/* free r1, r7, r8 */

}
TASK(t2) /* prio=2 */
{

/* alloc r1 */
l2
EnterCriticalSection();
/* alloc r2, r3 */
l3
/* free r2, r3 */

LeaveCriticalSection();
f();
/* free r1 */

}
TASK(t3) /* prio=3 */
{

/* alloc r1, r2, r3 */
l4
f();
/* free r1, r2, r3 */

}
void f()
{

/* alloc r4 */
l5
/* free r4 */

}

t1 t2

r1, r7, r8 r1

r1, r2, r3

r1, r4

t3

r1, r2, r3l1 l2

l3

l5

l5

l4

r1, r2, r3, r4

Figure 1: Interference graph

The situation is illustrated in the figure. There are three
columns, one for each task. In each column there are all the
code blocks l1 – l5 which are executed in this task, together
with all registers that are live within each block. Note that
the live registers are task-specific for shared code. There are
different registers live in l5 (i.e. the function f) because a
different set of registers is live at the different call sites of f.

As a result, the set of used (or live) registers at each block
(as it will be calculated by the compiler) is a mapping from a
pair consisting of a task and a code block to a set of registers:

U : T × L → P(R),
(t, l) 7→ {r ∈ R : r is live in block l in task t}

Additionally, there are edges from every code block in a
column to all the tasks which can preempt the task within
this block. For example, task t2 can be preempted in blocks
l2 and l5 by task t3 but not in block l3 due to the critical
section.

This interference graph is a mapping from a pair consist-
ing of a task and a code block to a set of tasks:

I : T × L → P(T),
(t, l) 7→ {t′ ∈ T : t′ can preempt t in block l}

Different scheduling algorithms and operating systems can
be modelled that way and will have significant impact on the
interference graph.

5.2 Bounding task-contexts
With the model described above, it is possible to specify

and calculate an optimized context for each task. First, the
set D(t) of the registers each task destroys is needed and
can be calculated as

D(t) :=
�

l∈L

U(t, l).

For the small example, one obtains:
D(t1) = {r1, r7, r8},
D(t2) = {r1, r2, r3, r4},
D(t3) = {r1, r2, r3, r4}

When a task t is preempted, it is necessary to store all
those registers which are live and can be destroyed by any
task which can preempt task t. It would be possible to store
different register sets depending on the code block where
the task was preempted (by looking at the program counter
when doing a context-switch). However, this is unlikely
to give much benefit and will significantly complicate the
context-switch in the operating system.

Therefore, for each task it is sufficient to traverse all blocks
of its code, and add to its context all registers which are live
in that block and can be destroyed by any task that can
preempt it (i.e. there is a corresponding edge in the inter-
ference graph). Formally, the task-context C(t) of a task t

(i.e. the set of registers that is sufficient to save whenever
task t is preempted) can be written as:
C(t) = {r ∈ R : ∃l ∈ L, t′ ∈ I(t, l) :

r ∈ U(t, l) ∩ D(t′)}.
For the small example, one obtains:

C(t1) = {r1},
C(t2) = {r1, r4},
C(t3) = ∅

Only memory to store three registers is needed. Without
this analysis every task-context would need to provide space
for the entire register set (3 · 8 registers in this example).
Obviously the benefit will often be much smaller, but in very
cost-sensitive and already optimized systems, a few bytes
saved might actually help to fit an application into a smaller
chip and save a lot of costs.

5.3 Inter-task register-allocation
So far, the space for task-contexts has been minimized

by analysing the code already produced for the application.
The next goal is to further minimize the RAM requirements
by considering the task-contexts already when generating
the application code, especially when assigning registers.

The scope of register-allocation in compilers varies from
single expressions or basic blocks to single functions or inter-
procedural register-allocation (see e.g. [3], [10], [5], [7]).
In this paper, the scope shall be extended to inter-task
register-allocation. Similar to inter-procedural assignment
of registers which helps to reduce spilling of registers across
function-calls, inter-task assignment can help to reduce the
memory needed to store registers of preempted tasks.

The goal of this optimization is to minimize the total space
of all task-contexts of a system. As the task-contexts of
tasks which cannot preempt each other (for example tasks
with the same priority that cannot be blocked) can use the
same memory, the space required to store all task-contexts
is not necessarily the sum of the sizes of all contexts.

Let s(r), r ∈ R be the memory requirement of each regis-
ter, and {T1, ..., Tn} a partitioning of T , such that all tasks
in a partition Ti cannot preempt each other, i.e.:

∀t ∈ Ti, l ∈ L : I(t, l) ∩ (Ti \ t) = ∅.

Therefore, if M(i) is the size needed to store the largest
task-context in a partition Ti, i.e.

M(i) := max
t∈Ti �

r∈C(t)

s(r),

then the object of minimization is:

n

�
i=1

M(i).

Inter-task register-allocation should not negatively affect
the intra-task code-generation. Typically, it will only guide
the choice between otherwise identical registers.

For the small example presented above, a possible im-
provement would be to replace r1 by r5 in t2 and by r6 in
t3 (assuming these registers are available). This would min-
imize the task-contexts to:

C(t1) = ∅,
C(t2) = {r4},
C(t3) = ∅
Although more registers are used, the total RAM require-
ments would be reduced.

Unfortunately, this optimization problem is not easily
solvable (as it is known, even optimal intra-task register-
allocation is usually NP-complete as it is at least as hard
as graph-coloring). Therefore, it is necessary to find ap-
proximations or solutions for special cases. The scheduling
algorithm and system services offered by the operating sys-
tem may affect inter-task register-allocation in a non-trivial
way. A first experimental implementation for one specific
scheduling strategy will be described below.

6. REQUIREMENTS ON COMPILERS
To carry out the optimizations described in this paper,

a compiler has to be able to calculate good bounds on the
registers used in different blocks of a task. This can only be
achieved if a call-tree can be constructed and the registers
used are known to the compiler most of the time. Where
this is not possible, worst-case assumptions have to be made
and good results are hard to obtain.

Applications using static operating systems usually are
rather well suited to this kind of static analysis. Neither
recursions nor dynamic memory allocations are usually used
due to reasons of safety and efficiency. Also, function pointer
variables are generally not used and use of external library
functions is very limited (source code is generally available
for the entire system).

These restrictions reduce some of the most difficult prob-
lems for static analysis. However, there are still a number
of requirements on compilers to obtain good results:

• Cross-module analysis is needed as the applications are
usually split across files.

• A call-tree has to be built, usually requiring data-flow-
and alias-analysis.

• Tasks, the scheduling-mechanism and the operating
system services have to be known to enable construc-
tion of the interference graph.

• Side-effects (especially register-usage) of inline-
assembly (if available), library- and system-functions
should be known.

While a few of these features are not yet common in
most compilers, more and more modern compilers pro-
vide at least the infrastructure (for example, cross-module-
optimizations) to incorporate them.

7. IMPLEMENTATION OF CONTEXT-
SWITCHES

To make use of the information collected by the compiler,
the generation of the operating system has to be adapted.
Rather than allocating full contexts for every task, memory
for the minimized contexts has to be allocated.

The routines for saving/restoring task-contexts have to
be modified in the operating system. Rather than using the
same routines for every task, different routines may have
to be generated for every task. This will increase code-size
to reduce RAM requirements. As RAM is typically much

more expensive than ROM (10-times might be a reasonable
estimate), it is still often worthwile to trade in RAM for
ROM.

For a set of tasks with similar contexts, it is possible to
use the union of these contexts for all tasks in the set and
share the routines for saving/restoring the context. This
enables fine-tuning between RAM and ROM requirements.
As RAM and ROM sizes of a certain microcontroller are
fixed, the ability to perform this tuning can be very useful
when fitting an application into a certain chip.

If task-contexts are subsets of another one, it may be
possible to use the same routines, just with different entry-
points. Also, some architectures (e.g. ARM [11] or 68k [15])
have instructions which can save/restore arbitrary register
sets controlled by a bit-mask in the instruction code. In
such cases, the ROM overhead can be very small.

8. FIRST IMPLEMENTATION AND RE-
SULTS

A first experimental implementation of inter-task register-
allocation and minimization of task-contexts has been im-
plemented in an existing C compiler ([13]) which offers the
required features mentioned above. Among several back-
ends was the MPC555 (PowerPC architecture) which was
used for first tests.

The operating system model supported is a fixed priority
fully preemptive scheduler without blocking or dynamic pri-
ority changes. The tasks are marked with special attributes
specifying their priority. These attributes can be created
from the application’s configuration data (for example OIL,
as mentioned above). They provide the compiler with all
information necessary to perform the analysis and optimiza-
tions mentioned in this paper (e.g. construction of the task
interference graph).

The normal intra-task (but inter-procedural) register-
allocation was extended to use a priority for each register. If
a choice between several otherwise identical registers has to
be made by the intra-task register-allocator, it will use the
register with the highest priority. Additionally, the top-level
function of a task will never save any (callee-save) registers
like a normal function.

The inter-task register-allocation modifies these register
priorities for the intra-task allocator. It processes the tasks
in priority order and adjusts the priorities in such a way
that tasks on the same priority (which can share the same
context) prefer to use the same registers, whereas tasks on
different priorites tend to use different registers.

While the scheduling model considered here is rather sim-
ple, it seems possible to extend this mechanism to more
complicated schedulers without too much additional effort.
Also, many systems are actually using such schedulers, es-
pecially if they have to meet hard real-time contraints ([2]).

To obtain some first benchmarks, different combinations
of tasks out of the following categories have been created
and optimized.

rbuf: A simple task which just fetches a value from an IO
port and stores it into a ring-buffer. It uses three
general-purpose-registers.

mm: Normal floating-point matrix-multiplication. It uses
eleven general-purpose-registers and three floating-
point-registers.

nrbuf nmm nint nall RAMstd RAMopt savings
10 0 0 0 1040 16 98%
0 10 0 0 3360 296 91%
0 0 10 0 1040 936 10%
0 0 0 10 3360 3024 10%
2 2 2 4 2432 1816 25%
4 2 2 2 1968 1168 41%
4 4 2 0 1968 312 84%
6 0 4 0 1040 384 63%
0 6 0 4 3360 1344 60%
3 1 6 0 1272 596 53%

Table 1: Benchmark results

int: A task using all general-purpose-registers.

all: A task using all general-purpose-registers as well as all
floating-point-registers.

Classical optimizations like common-subexpression-
elimination, loop-invariant code-motion or strength-
reduction have been performed. Loop-unrolling has been
turned off. The following table lists the total context sizes
with and without optimization. The first four columns
(nrbuf , nmm, nint and nall) show how many tasks of each
category are used for a test case. All tasks have different
priorities. The RAM requirements of each task (e.g.
stack-space) are not affected by the context-optimization.

The fifth column (RAMstd) lists the total task-context
size in bytes with conventional allocation. It is assumed that
tasks which do not use floating-point are marked accordingly
by the application. A smaller context is allocated for these
tasks, even without optimization.

Only the general-purpose- and floating-point-registers
which are available for the application have been consid-
ered. Any special-purpose registers or registers that must
not be used by the application are ignored here. As a re-
sult, a full context of a task not using floating-point needs
104 bytes and a full context of a task using floating-point
needs 336 bytes. Therefore, if nf denotes the number of
tasks using floating-point and ni the number of tasks using
only general-purpose registers, the non-optimized context
size can be calculated as

nf · 336 + ni · 104.

The sixth column (RAMopt) lists the total task-context
size using the minimized register sets obtained from the com-
piler. Inter-task register-allocation was performed, but with
this simple scheduling model, it gives additional benefit only
in very rare cases. Finally, the last column lists the savings
in percent.

It can be observed that the savings depend a lot on the
constellation of tasks. As long as almost every task uses all
registers, the benefit will be small. However, with every task
that uses only a part of the register set, memory is saved.

The first four rows are rather academical as they use 10
tasks of the same category. However, the remaining rows
could perhaps reflect typical systems with a number of tasks
using the entire register sets as well as some smaller light-
weight tasks using only part of the register set.

For several of these constellations, the optimization re-
duces the RAM usage for task-contexts significantly. Tests
with real applications should be performed to verify these
results for practical use.

9. CONCLUSION AND FUTURE DIREC-
TIONS

The results of these first studies have shown potential
for this kind of optimization. In a very cost-sensitive and
already highly optimized environment, inter-task register-
allocation and context-optimization of static operating sys-
tems can sometimes further reduce RAM requirements sig-
nificantly.

The optimization, however, is not easy to achieve. An
advanced compiler framework as well as sophisticated oper-
ating system technology is needed and must interact. These
technologies do exist and are already in use, but the inter-
action is not yet common. However, embedded operating
systems (especially those that are delivered in source code)
are already often tied to specific compilers. The vendors of
compilers and operating systems tend to cooperate some-
what. Therefore, deeper interactions like proposed in this
paper do not seem to be out of reach.

To get further figures on the effectiveness, it is planned
to implement these optimizations in commercial static op-
erating systems and, if possible, study the results on real
production code. Implementations for more complicated
scheduling algorithms and operating systems should be im-
plemented. Tests for different CPU architectures might also
yield interesting insight into the effectiveness of the proposed
optimizations.

10. REFERENCES
[1] T. Baker, J. Snyder, D. Whalley. Fast Context

switches: Compiler and architectural support for
preemptive scheduling, Microprocessors and

Microsystems, 1995, pp. 35–42.

[2] L. P. Briand, D. M. Roy. Meeting Deadlines in
Hard Real-Time Systems, IEEE Computer Society

Press, 1999.

[3] P. Briggs. Register Allocation via Graph Coloring,
thesis, Houston, 1992.

[4] A. Dean, J. P. Shen. Hardware to Software
Migration with Real-Time Thread Integration,
EuroMicro Workshop on Digital System Design, 1998.

[5] C. Fischer, S. Kurlander. Minimum Cost
Interprocedural Register Allocation, Symposium on

Principles of Programming Languages, 1996, pp.
230–241.

[6] D. Greene, T. Mudge, M. Postiff. The Need for
Large Register Files in Integer Codes, 2000.

[7] S. Muchnick. Advanced compiler design and
implementation, Morgan Kaufmann Publishers, 1997.

[8] P. Nuth. The Named-State Register File, thesis,
MIT, 1993.

[9] C. Waldspurger, W. Weihl. Register Relocation:
Flexible Contexts for Multithreading, Proceedings of

the 20th Annual International Symposium on

Computer Architecture, May 1993.

[10] D. Wall. Global Register Allocation at Link Time.
Proceedings of the SIGPLAN ’86 Symposium on

Compiler Construction, pp. 264–275.

[11] http://www.arm.com

[12] http://www.atmel.com

[13] http://www.compilers.de/vbcc

[14] http://www.infineon.com

[15] http://www.motorola.com

[16] http://www.osek-vdx.org

[17] http://www.trimedia.com

