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Zusammenfassung

In den letzten Jahren wurde eine steigende Anzahl kleiner eingebetteter Systeme in
hohen Stückzahlen eingesetzt. Beispielsweise in der Automobilindustrie, wo annähernd
100 elektronische Steuergeräte (ECUs) in einzelnen Oberklassefahrzeugen und bereits
mehrere Dutzend in Mittelklassefahrzeugen verbaut werden. Meist werden kleine “Sys-
tem-on-Chip” Mikrocontroller mit statischen Betriebssystemen benutzt. Da das RAM
auf diesen Chips sehr teuer ist und nur wenige KB davon auf solchen Systemen verfügbar
sind, ist die Reduzierung des RAM-Verbrauchs ein wichtiger Punkt um Kosten zu
senken — besonders bei der Produktion hoher Stückzahlen.

Diese Dissertation stellt einige neue Verfahren vor, um den RAM-Verbrauch solcher
Systeme durch die Anwendung fortgeschrittener Übersetzungs- und Optimierungstech-
niken zu reduzieren. Klassische Optimierungen werden hinsichtlich ihrer Auswirkungen
auf den RAM-Verbrauch untersucht. Durch geschickte Auswahl von Optimierungsal-
gorithmen kann der RAM-Verbrauch in einer Testreihe um fast 20% gesenkt werden.
Obergrenzen für Stackgrößen der Tasks der Anwendung werden vom Übersetzer statisch
berechnet. Durch modulübergreifende Analyse auf Hochsprachenebene werden hier
gute Ergebnisse erreicht, die im Vergleich mit einem kommerziell verfügbaren Werkzeug
Vorteile in der Handhabbarkeit und Zuverlässigkeit zeigen. Als wichtigster Punkt wer-
den die Registersätze, die das Betriebssystem sichern muss, wenn ein Task unterbrochen
wird, optimiert, indem vermieden wird, Register unnötig zu speichern. Registervergabe
über Taskgrenzen hinweg reduziert den Speicherbedarf für diese Registersätze weiter.

Die neuen Algorithmen wurden in einen Übersetzer eingebaut und eine kommerzielle
OSEK Implementierung wurde modifiziert, um die neuen Optimierungen zu nutzen.
Tests auf echter Hardware, sowie Vergleiche mit kommerziellen Programmen zeigen
nicht nur, dass das System funktioniert und sowohl Benutzbarkeit als auch Wartbarkeit
verbessert, sondern auch, dass eine signifikante Reduzierung des RAM-Verbrauchs und
der damit verbundenen Kosten möglich ist. In einer Reihe von Benchmarks wird der
RAM-Verbrauch i.d.R. um 30%–60% gesenkt.
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Abstract

In recent years, a rapidly growing number of small embedded systems have been used in
very high volumes. One example is the automotive industry, where the number of Elec-
tronic Control Units (ECU) in a single car is approaching 100 for high end automobiles
and several dozens are used in mid-range cars. Small system-on-chip microcontrollers
are often used with static operating systems. As on-chip RAM is rather expensive and
only few KBs of RAM are available on such devices, reducing the RAM usage is an
important objective in order to save costs — especially in high-volume production.

This thesis presents several new approaches to reduce the RAM usage of such sys-
tems by applying advanced compilation and optimization techniques. Common opti-
mizations are examined regarding their impact on RAM usage. By selecting classical
optimization algorithms regarding their impact on RAM usage, the RAM required for
a series of test cases is reduced by almost 20%. Upper bounds for stack sizes of ap-
plication tasks will be statically calculated using high-level analysis available in the
compiler. Comparisons with a commercial tool working on machine-code-level show
clear advantages regarding maintainability as well as reliability. Most important, the
register sets stored by the operating system when a task is preempted are optimized
by abstaining from saving unnecessary registers. Inter-task register-allocation further
reduces the RAM required to save those task contexts.

The new algorithms have been added to a production quality compiler and a full
commercial OSEK implementation was modified to make use of the new optimizations.
Tests on real hardware as well as comparisons with commercial tools not only show that
the system works and improves usability and maintainability, but also that significant
reductions of RAM requirements, and therefore cost savings, are possible. In a series
of benchmarks, RAM usage is reduced on average by 30%–60%.
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Chapter 1

Introduction

In recent years, a rapidly growing number of small embedded systems have been used
in very high volumes. One example is the automotive industry where the number
of Electronic Control Units (ECU) in a single car is approaching 100 for high end
automobiles and several dozen in mid-range cars (an overview of the ECUs in the
current 7-series BMW is given in [68]; for numbers of microcontrollers in different cars,
see [15]). Another domain is the emerging area of wearable computing which may
produce very small systems in high volume.

Typically system-on-chip microcontrollers are used which contain the CPU, periph-
erals, ROM and RAM on a single chip. ROM sizes of a few hundred KB and RAM
sizes of a few KB are common. Figure 1.1 shows a die overlay of the MPC565, a micro-
controller currently used in automotive applications. While the flash ROM with 1MB
capacity clearly is the largest part of the chip, the blocks of RAM (which are only 4KB
each) are the second biggest factor influencing die size, much bigger than, for example,
the PowerPC core. When taking capacity into account, it can be observed that RAM
takes up about ten times as much chip space compared to programmable flash ROM.
This shows that reduction of RAM usage is an important goal. Even transformations
that trade off RAM for ROM can still save die size unless about ten times as much
additional ROM has to be traded for the RAM that is saved. Furthermore, off-the-shelf
chips have a fixed amount of on-chip RAM and ROM. To fit an application into the
chip, both ROM as well as RAM has to be sufficient (otherwise a larger and more
expensive off-the-shelf chip has to be used). If there is not quite enough RAM space,
but some unused ROM space, RAM reduction can help to fit the application on the
smaller chip and save costs.

Not very long ago, these small systems were typically programmed in assembly
language using no operating systems. In recent years, however, high level languages
are often being used for such systems (see, for example, [93] or [135]) and the use of
operating systems is getting more common. This is also illustrated by the fact that
the market segment of 8bit microcontrollers in 2002 has shrunk by about 10%, whereas
the segment of 32bit controllers (that are much better suited to e.g. C compilers)
increased about 40% (16bit controllers stayed about equal), see [136], [137]. Also, new
8bit architectures are tailored to C programming, e.g. the Atmel AVR (see [9]). The
current roadmap of Motorola [105], market leader for 8bit controllers, only shows future
products for their HC08 series that has been optimized for C programs [136].

As, for example, the ECUs in cars are usually connected via several bus systems and
have to co-operate, a common communication layer provided by the operating system is
a big benefit. In addition, using the standard features of well-tested operating systems
seems to promise more stable systems and shorten development times as application

13
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Figure 1.1: Die Overlay showing ROM and RAM sizes
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programmers do not have to “re-invent the wheel”.
Use of high level languages and operating systems also significantly reduces the

amount of work necessary to port an application from one chip or architecture to
another. Therefore, chips can be chosen more freely — an important benefit in volume
production where every penny counts.

1.1 Static Operating Systems

Classic operating systems are not well suited for such systems because of several rea-
sons. The most important of these being the high memory requirements. Another
problem is the danger of fragmentation or memory leaks. Many ECUs are safety-
critical and the risk of failure to allocate a system resource due to lack of RAM or
memory fragmentation can not be tolerated.

Static operating systems help to avoid these problems. In such operating systems
all system resources like tasks, messages, mutexes etc. used by the application are
configured statically using an offline tool. After verifying validity, a kernel which is
specially optimized to this very application is generated from this configuration (see
figure 1.2).

appl1.c appl2.cappl.oil

OS Generator

os.c

Compiler

ROM image

Figure 1.2: Architecture of a Static Operating System

All resources needed by the operating system are statically allocated during gen-
eration time and therefore no dynamic memory management is needed. Allocating an
operating system resource can never fail!

As all resources used by the application are known when the kernel is generated,
it is possible to produce a very small optimized kernel. Functionality not needed by
this application can be automatically omitted, and the size of data structures can be
reduced. For example, a task can be identified by a single byte that is used as an
index into arrays containing the necessary information for all tasks. This is often more
efficient than using a (larger) pointer to a task control block as is used in many systems.
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Also, it allows the constant parts of the task control block to be placed into ROM. For
very small systems, this can be important.

These benefits of static operating systems allow them to be used in very small
systems (e.g. 8bit microcontrollers with 32KB ROM and 1KB RAM) and still leave
enough room for the application.

The market of static operating systems is currently dominated by systems conform-
ing to the OSEK specification [113] which will be described below.

1.2 Compilers for Embedded Systems

The way software for such systems is being developed has changed over the years. Tra-
ditionally, small systems that demand efficient and small code have been programmed
almost exclusively in assembly language. The lack of compilers able to produce code
that is sufficiently efficient was the main reason. Also, there are special requirements
of such code (e.g. interrupt handlers, accessing special hardware etc.) that could not
be expressed in high-level programming-languages.

Over time, compiler technology has improved. Many optimizations were built into
compilers and — also an important point — the platforms used for developing (i.e.
personal computers and workstations) have become powerful enough to run optimizing
compilers with reasonable turn-around times.

Contrary to embedded systems, software development for larger systems has been
done almost exclusively in high-level languages for a long time. With optimizing com-
pilers becoming more common, assembly-language is being used less and less. Basically,
compilers generate code that is “good enough” and there is no return of investment for
writing code in assembly language.

However, the constraints for high-volume embedded systems are much tighter. In-
creased space requirements imply bigger hardware and higher costs. Therefore, there
are much more cases where better optimizations allow significant cost reductions —
which is an important reason why high-level languages were rarely used.

There are, however, good reasons for using high-level language compilers now. Soft-
ware developers able to write good assembly code are rare — especially as every ar-
chitecture has its own assembly language. Also, writing optimized assembly language
code is usually more time-consuming and error-prone. As the complexity of embedded
systems increases, assembly language becomes harder and harder to maintain. Also,
as the market for embedded devices grows (see e.g. [87]), there is a growing demand
for more and larger embedded software which has to be satisfied. The market size of
embedded systems is about 100 times the desktop market and compilers for embedded
systems will become more important according to [51].

Furthermore, code written in assembly language is tied to a certain architecture
and usually can not be moved to another one without completely rewriting it. It is
often necessary however to reduce costs by moving the application to another chip that
is cheaper. With high volumes, the cost savings can be much higher than the cost of a
recompilation. For assembly code, the cost of moving the application is much higher.
Even if it is still lower than the savings that could be obtained by moving to another
architecture, the time required to rewrite the code for the new system will rarely be
acceptable.

As a result, there is a need for highly optimizing compilers that are able to gen-
erate very efficient code for such systems. Currently available compilers meet these
constraints to varying degrees. Classical global optimizations are reasonably common
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although there are a few (especially small and somewhat unusual) architectures that
lack highly optimizing compilers.

There are countless research projects dealing with various aspects of compilation
for embedded systems. The LANCE project [93] concentrates on retargetable code
generation for DSPs, the SPAM project [130] examines very expensive optimizations to
reduce hardware costs of embedded systems. Research on resource-aware compilation is
described in [120]. The OPTIMIST project [111] examines integrated code generation
for irregular architectures. Machine-independent optimizations and hardware-software
co-design are researched in the OOPS project [112]. The SUIF [138] and Zephyr [153]
projects offer frameworks for retargetable optimizing compilers. There are also many
other academical and commercial compiling systems for embedded systems.

1.3 RAM Usage

The amount of RAM available on a small system-on-chip is very expensive and typi-
cally at least an order of magnitude smaller than on-chip ROM size (see section 2.2).
Therefore, minimization of RAM usage is a very important objective — especially as
optimizing for RAM usage seems somewhat neglected in existing compiler design.

Usage of RAM in a static system can usually be attributed to the following sources:

• static application data

• application stack

• static operating system data

• task contexts

Static application data can rarely be minimized unless the developer wrote code that
contains unused data. Similarly, static operating system data is already minimized at
generation time — one of the benefits of using static operating systems.

That leaves the application stacks and task contexts as major stack consumers.
Task contexts contain the register sets the operating system must save when a task is
preempted. Application stacks generally consist of the following items:

• local variables used by the task code

• register values pushed by the compiler

• temporary variables created by the compiler

• safety margins (if the stack size needed is not known exactly)

1.4 Contributions and Organization of this Thesis

This thesis presents several approaches to reduce RAM usage by applying new advanced
compilation and optimization techniques. Chapter 2 introduces the environment that
was used to implement and test these optimizations. The OSEK operating system is
used as a static operating system. Some typical microcontrollers that are used in the
automotive industry are presented, and an overview about vbcc, the compiler that was
used as a basis to implement the new optimization algorithms, is given.

Following that, a series of classical compiler optimizations is discussed regarding the
applicability to small embedded systems in chapter 3. Special attention is put on the
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impact of those optimizations on RAM usage. Test results suggest that optimizing for
RAM requires different compiler settings than optimizing for speed or code size. There-
fore, an “optimize for RAM” option seems to be a promising extension of compilers for
small embedded systems.

Chapter 4 on stack analysis describes a new approach to statically calculate the
size of task stacks within the compiler to eliminate safety margins. Stack analysis was
built into the compiler and comparing the results with a commercial post link-time tool
shows the advantages of the high-level analysis performed.

Reducing the size of task contexts is the objective of chapter 5. The new idea is
to compute optimized contexts for every task which contain only the registers that
really have to be saved. Furthermore, the register allocation of the compiler is adapted
to perform inter-task register-allocation. Experimental results show the theoretical
improvements possible with this new optimization.

All these measures are then combined in a real world implementation in chapter
6. A commercial OSEK system is modified to work with the improved vbcc compiler.
Context optimization and inter-task register-allocation is performed as well as stack
analysis and some additional improvements. Generation of task stacks and task con-
texts is moved from the operating system generator to the compiler (see figure 1.3).
Several problematic attributes like the stack size of tasks no longer have to be specified.

appl1.c appl2.cappl.oil

OS Generator

os.c

Compiler

ROM image

New information flow

Part now created
directly by the compiler

Figure 1.3: New Architecture

Tests on real hardware show not only that the system works and that the usabil-
ity and maintainability is improved, but also that significant reductions in the RAM
requirements are possible.



Chapter 2

Target/Environment

This chapter gives an overview of the target environment that is of interest in this thesis.
A short introduction to OSEK OS, perhaps the most important static operating system,
is given. Also, a few important microcontrollers that are used with OSEK in high-
volume products are presented. Furthermore, the compiler that was used to implement
the new optimizations that are proposed in this thesis is described shortly.

2.1 OSEK

The OSEK/VDX project defines an industry standard for an open software architecture
for ECUs in vehicles. It is a result of harmonization between the German OSEK
(“Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug” —
Open systems and the corresponding interfaces for automotive electronics) and the
French VDX (“Vehicle Distributed eXecutive”). Usually, just the term OSEK is used.
OSEK is an open standard which is currently in the process of ISO standardisation
(ISO 17356). OSEK is not a certain implementation but it specifies the behaviour
and services of operating systems. Several vendors offer OSEK compliant operating
systems, and ECUs running such OSEK implementations are used in production cars
today. Currently, OSEK compliant operating systems from several companies have
been officially certified [1, 144, 102, 95, 151, 57, 3]. Also, there are other commercial
and academic implementations (e.g. [157, 133]).

OSEK/VDX consists of several specifications, including Operating System [114],
Communication [118], Network Management [117], Time-Triggered Operating System
[115], and others. This section will give a short overview of those parts of the OSEK
Operating System specification which are relevant for this thesis. For full details,
consult the OSEK specifications and the OSEK/VDX homepage [113].

2.1.1 Philosophy

The OSEK OS specification describes an API every OSEK compliant operating sys-
tem has to implement. Only the behaviour is prescribed, the exact implementation,
however, is up to the vendor. The main principles are:

• fully static system

• highly scalable

• portability of application code (source level only)

• configurable error checking

19
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• support for running code from ROM

• only minimum hardware requirements - must run on 8bit controllers

• predictable timing

The static configuration of the operating system is provided in a separate file, see
section 2.1.3.

2.1.2 Portability

While portability on source level is desired, compromises have to be made here. Ac-
cessing hardware like on-chip peripherals is still done by the application. As very small
systems are used on widely different hardware, a general hardware abstraction layer
has been considered too expensive. It may be provided as an extension, but it is not
required from the operating system.

2.1.3 OSEK Implementation Language

A standard file format called OIL (OSEK Implementation Language, see [116]) is used
to specify the tasks, scheduling properties, and all other operating system resources
used by the application. Note that this is the language to configure the static operating
system parameters, not the language used to write the application code (this is usually
done in C). Figure 2.1 shows part of an example OIL file that contains some global
properties, a task description, as well as some OSEK events and resources (see below).
Apart from standard attributes, an OIL file may contain additional vendor specific
attributes that follow the syntax described in the OIL specification.

2.1.4 Task Management

OSEK tasks are the main threads of execution in a system. Although it is not explicitly
stated, they share the same address space and there is no memory protection. OSEK
does, however, discern between tasks that may enter a waiting state (called “extended
tasks”) and those that never do (“basic tasks”). This property has to be statically
configured for each task to allow for a series of optimizations during generation of the
operating system.

The control structures of each task can be statically allocated during system gen-
eration as there can only be one instance of every task. Basically, tasks can not be
created, only activated. The possible task-states for an extended task are shown in
table 2.1:

Table 2.1: OSEK Task States
task-state description
running The CPU currently executes this task.
ready The task is ready to enter the running state,

but another task is currently executing.
waiting A task is blocked because it requires an event (see below).
suspended The task is passive and has to be activated.

Figure 2.2 shows the possible task-state transitions of an extended task. For basic
tasks, the waiting state and its edges do not exist.
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#include<PPC.oil>
CPU OSEK_PPC
{
OS ExampleOS
{
MICROCONTROLLER = MPC555;
CC = AUTO;
SCHEDULE = AUTO;
STATUS = EXTENDED;
STARTUPHOOK = FALSE;
ERRORHOOK = FALSE;
SHUTDOWNHOOK = FALSE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;

};
TASK ExampleTask
{
TYPE = AUTO;
AUTOSTART = FALSE;
SCHEDULE = FULL;
RESOURCE = Opener;
EVENT = WindowDown;
EVENT = WindowUp;

};
EVENT WindowUp ;
EVENT WindowDown ;
RESOURCE Opener
{
RESOURCEPROPERTY = STANDARD;

};
};

Figure 2.1: OIL Example
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Figure 2.2: OSEK OS Task-State Transitions

Every task has a statically assigned priority as well as an attribute specifying
whether the task is fully preemptive or non-preemptive. A fully preemptive task is
interrupted immediately when another task with higher priority gets ready (see figure
2.3 which assumes Task 2 has a higher priority). A non-preemptive task may only be
interrupted when it voluntarily releases the CPU by invoking a system function like
Schedule() (therefore, in figure 2.4, Task 1 keeps running even after Task 2 got ready).

suspended running suspended

running ready runningTask 1

Task 2

Activation
of Task 2

Termination
of Task 2

Figure 2.3: OSEK OS preemptive Scheduling

In application code, each task is identified with the TASK keyword (a C macro defined
in an operating system header file):

TASK(myTask)
{
...
TerminateTask();

}

Therefore, the code belonging to a task can be easily identified from the source code.
While the tasks can have shared code (e.g. when calling the same function from the task
body), each task has its own top-level function. Also, there can only be one instance of
every task. Activation and termination of tasks is controlled by the following services:

• ActivateTask() moves a task from the suspended to the ready state.
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Figure 2.4: OSEK OS non-preemptive Scheduling

• TerminateTask() is used to terminate a task. A task can only terminate itself
and must not terminate other tasks. A task must not return from its top-level
function without calling TerminateTask().

2.1.5 OSEK Events

Events are the OSEK equivalent of semaphores. They are objects statically defined
in the OIL file. A task can wait on those events (waiting for several events at once is
possible) it has been assigned in the OIL file. Tasks which are not assigned an event
(“basic tasks”) can never enter the waiting state. Setting of events can be done by
every task. Every task has its own set of events, i.e. when a task sets an event, it has
to specify for which task it is set (this allows sharing of bits in a mask of events). The
most important system services related to events are:

• WaitEvent() puts a task in waiting state until one of the events it is waiting for
is set (it will return immediately if one event is already set).

• SetEvent() sets an event for a task.

• ClearEvent() clears some of the events of the task calling this service.

2.1.6 OSEK Resources

OSEK Resources are mutexes used to implement controlled access to shared resources.
To avoid the problems of deadlocks and especially priority inversion (for further infor-
mation, see e.g. [24, 81]), OSEK implements a “priority ceiling” or “highest locker”
protocol. All resource objects are statically assigned to tasks, i.e. any task that may
want to obtain a resource must specify this fact in the OIL file. As soon as a task
obtains a resource, its priority is raised to the highest priority of all tasks that may
require that resource. The relevant system services of OSEK are:

• GetResource() obtains the specified resource and possibly increases the task’s
priority.

• ReleaseResource() releases the resource and resets the priority.

While occupying a resource, a task is not allowed to terminate itself or to wait for
an event. As a result, a task will never be put into the waiting state when trying to
obtain a resource — obtaining a resource will always succeed.
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2.1.7 Interrupt Service Routines

Embedded systems usually do a lot of work that depends on external inputs, e.g. from
sensors or busses. Interrupt service routines are used to handle such external events
without the need for polling. As OSEK has to run on very small systems that may
have to deal with high interrupt loads, efficiency is important here. Therefore, interrupt
handlers in OSEK are very close to the hardware. There are even two general categories
of ISRs (interrupt service routines) defined in OSEK:

• ISRs of category 1 are not allowed to call (almost all) system services.

• ISRs of category 2 may call several system services including ActivateTask()
and SetEvent() which can cause rescheduling.

While ISRs of category 1 in general do not affect the operating system, category
2 ISRs usually have to be called in some special environment to allow rescheduling at
the right point in time, i.e. just before returning from ISR level to task level. Figure
2.5 shows the right point in time to dispatch a task that has been activated by an ISR
(assuming Task2 has a higher priority and Task1 is preemptive).

In the application code, those ISRs are written in a similar fashion to tasks:

ISR(myISR)
{
...

}

Task1

Task2

ISR1

ISR2

Activation of Task2 Dispatch of Task2

Figure 2.5: OSEK Interrupt Handling

2.1.8 Properties of Application Code

OSEK applications have certain properties that are very important for the work in this
thesis, notably:
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• no heap memory management

• no recursions

• use of libraries as source code rather than object code

• restricted use of function pointers

These restrictions are strongly suggested, for example, by the OSEK OS specification
[113] or guidelines published by the Motor Industry Software Reliability Association
[103]. As most automotive applications have real-time requirements and are often
safety-critical, such constructs should be avoided. For example, recursions and heap
memory management make it too difficult to verify that a system does not run out
of space at some time. Use of function pointer variables is also considered dangerous.
Availability of source code is required for scalability, certification, and portability.

For the compilation and analysis techniques presented in this thesis, these restric-
tions are crucial. They allow for much better static analysis than dynamic systems that
make heavy use of, for example, recursions and heap memory management.

2.2 Examples of relevant Microcontrollers

The following sections will give a short overview of three microcontroller families that
have been used for some experiments in this thesis (because of their widespread use
in the automotive industry and support of the tools examined in this thesis, i.e. vbcc
and StackAnalyzer). All of them are available in versions suitable for the automotive
industry, i.e. as systems-on-chip with CPU, peripherals, RAM, and flash ROM on a
single die. They are all supported by more than one commercial OSEK implementation
and all of them are built into cars out on the road now.

2.2.1 68HC12/HCS12

The 68HC12 produced by Motorola is a small to medium 16bit architecture that has
its roots in the old 6800 series of 8bit processors. Many derivates are available, offering
different sets of peripherals and varying on-chip memory sizes. There is a line of
derivates specially designed for automotive applications. A new, compatible product
line, the HCS12 (or Star12) microcontrollers, show the continuing demand. A big
field of application is body electronics in current cars (e.g. window openers, dashboard
control, etc.).

The on-chip memory available on current 68HC12 devices ranges from 1KB RAM
and 32KB of flash ROM up to 8KB of RAM and 128KB of ROM. The new HCS12
series ranges from 2KB RAM/64KB ROM up to 12KB RAM/256KB ROM. Unaligned
memory access is allowed without any restrictions, therefore, eliminating the need for
padding.

Register Set

The 68HC12/HCS12 microcontrollers have a small register set that also shows the
heritage of their 8bit ancestors. Two 8bit accumulator registers (A and B) can be used
together as one 16bit accumulator (D) in many instructions. Additionally, there are
two 16bit index registers (X and Y), a dedicated 16bit stack pointer (SP) as well as a
program counter (PC). An 8bit flag register (CCR) stores condition codes and processor
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state (see figure 2.6). Segment registers must be used to access the entire ROM area
of the devices with larger flash memories (outside of 16bit address space).

B

X

Y

SP

PC

CCR

A

D

00 15

0 7

Figure 2.6: HC12 Register Set

Instruction Set

The 68HC12/HCS12 provides instructions of varying length with many different kinds
of memory operands available, e.g. absolute addressing, indexed addressing (via X, Y,
or SP), double indirection, or pre- and post-increment/decrement addressing modes.
As it is an accumulator architecture, most instructions use the accumulator as implicit
operand and destination. Therefore, many instructions have a single operand or none
at all.

Instructions do not have to be aligned in memory and, in fact, there are instructions
occupying every length from a single byte up to six bytes. A so-called “instruction
queue” is used to efficiently fetch instructions. No classic pipeline is used, however.

2.2.2 C16X/ST10

The C16X family of 16bit microcontrollers was originally developed by Siemens and
various derivates are now produced by several manufacturers, most notably Infineon
and ST Microelectronics (under the ST10 label). Many different configurations, varying
peripherals as well as memory sizes are available. Typical automotive configurations
from Infineon range from 2KB RAM/64KB ROM up to 8KB RAM/256KB ROM. ST
Microelectronics offers devices up to 18KB RAM and 512KB ROM. Smaller configura-
tions are used for body control in cars, but higher processing power makes them also
suitable for more demanding applications. Classic implementations offer a four-stage
pipeline, but improved versions with a five-stage pipeline are also now available.

Register Set

The C16X architecture provides several windows of 16 16bit general purpose registers
as well as a series of special purpose registers (see figure 2.7). The general purpose
registers are not real core registers but they refer to locations in the internal RAM.
A special register, the context-pointer CP, contains the start address of the register
window in internal RAM that contains the general purpose registers. By changing
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the context-pointer, the register window is moved. Basically, register Rn is a shortcut
for the word at memory location CP + 2 · n. For compilers and operating system, the
following registers are of interest:

• SP: A dedicated stack pointer is available. Return addresses and interrupt frames
are stored through this register. It can only address a limited part of internal
RAM.

• STKOV/STKUN: These registers can be used for hardware monitoring of the internal
stack. If the stack pointer leaves the window specified by those registers, an
exception is raised.

• CP: With this context pointer, the window of general purpose registers can be
moved around in the internal memory.

• PSW: The processor status word contains condition codes, interrupt levels etc.

• MDL/MDH: To reduce interrupt latency times, slow multiplication instructions can
actually be preempted by interrupts. These registers store the state of the mul-
tiplication unit.

SP

STKOV

R0

...

...

R31

STKUN

PSW

CP

MDL

MDH

0 0 1515

Figure 2.7: C16X/ST10 Register Set

To make use of more than 64KB of address space, segment registers must be used.

Instruction Set

All instructions on the C16X occupy either 16 or 32 bits and have to be aligned on
word boundaries. Many instructions have two operands with one operand being both
a source and destination. While in most cases one operand must be a general purpose
register, the other one can also be a (real) memory operand or an immediate constant.
Addressing modes include absolute addressing, indirect addressing via a general purpose
register, and, in some cases, pre/post-increment/decrement modes.

As the dedicated stack pointer register is not usable in indexed addressing modes
and can only address a part of internal RAM, a general purpose register is commonly
used by compilers as a so called “user” stack pointer to address local variables etc.
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2.2.3 MPC5XX

The Motorola MPC5XX family is a series of 32bit RISC microcontrollers designed for
the automotive industry. They adhere to the PowerPC ISA (instruction set architec-
ture) that has its roots in the IBM POWER architecture of high-end RISC processors
for servers and workstations. There are also various other implementations of the
PowerPC architecture made by other manufacturers [7, 74]. They range from micro-
controllers to high-end server CPUs. The MPC5XX series is at the lower end of this
range.

It is, however, on the higher end of microcontrollers currently using static operating
systems. A big field of application is sophisticated engine management. Its high pro-
cessing power (compared to the other microcontrollers described here) as well as some
special peripheral support (e.g. programmable timer units) allow the ability to control
high-revving engines with a larger amount of cylinders. Also, complex calculations
required e.g. for knock detection can be implemented.

The on-chip memory sizes of current devices range from 26KB RAM/448KB ROM
up to 36KB RAM/1024KB ROM.

Register Set

The MPC5XX derivates have 32 64bit floating point registers, 32 32bit general purpose
registers, an instruction pointer (32bit), and a series of (partially device-specific) special
purpose registers (which can be transferred to/from general purpose registers but not
directly to memory). This is illustrated in figure 2.8. The special purpose registers
that are of interest for compilers and/or operating systems are:

• CR0-CR7: A 32bit register that stores 8 sets of 4bit condition codes.

• LR: When calling a subroutine, the return address is stored in this link register.
Also, it can be used as the target of a computed call or jump.

• CTR: The special counter register can be used in some loop instructions or specify
the target of a computed call or jump.

• FPSCR: Floating point status (e.g. rounding mode) is stored in this register.

• XER: Integer exception information is stored in this register.

• MSR: The machine state is stored in this register. It contains, for example, the
interrupt enabling flag.

• SRR0/1: When servicing an exception, the CPU stores the old program counter
and machine state register in those registers.

• SPRG0-3: These four registers are reserved for the operating system. They are
needed, for example, to provide nested interrupt handlers.

Instruction Set and Execution Units

As a RISC architecture, all the PowerPC instructions occupy 32 bits. Most arithmetic
instructions have three operands. Only registers and small immediate constants are
available as operands. All accesses to memory have to be done via special load and store
instructions. Addressing modes supported are indirect (through any general purpose
register) with constant 16bit offset, register offset, or pre-increment/decrement modes.
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Figure 2.8: PowerPC Register Set

All instructions have to be aligned (as well as memory accesses). An instruction
cache is available and a four-stage pipeline allows single-cycle execution of many in-
structions. The CPU provides four execution units:

• The integer unit performs arithmetic operations on the general purpose registers,
etc.

• Floating point operations are executed in the floating point unit.

• The load/store unit handles all accesses to memory.

• Changes in control flow are handled by the branch unit which supports, for ex-
ample, static branch prediction.

The units can operate somewhat in parallel and also some out-of-order execution
is possible. Nevertheless, the CPU appears fully sequential to the application. For
example, zero-cycle branches are possible.

2.3 The vbcc Compiler

This section shall give a short overview of vbcc, a compiler that was written by the
author of this thesis and is used as a basis for the work that is presented herein.

2.3.1 General

vbcc is a highly optimizing portable and retargetable ISO C compiler. It supports
ISO C according to ISO/IEC 9899:1989 and a subset of the new standard ISO/IEC
9899:1999 (C99).

It is split into a target-independent and a target-dependent part, and provides
complete abstraction of host- and target-arithmetic. Therefore, it fully supports cross-
compiling for 8, 16, 32 and 64bit architectures.
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The compiler itself is written in portable C and can be compiled and run on all
common host operating systems like Linux, Unix, or Windows.

While it is not sold commercially at the moment, the compiler itself is not an
academic research project but a production quality compiler that has been in real
public use and has successfully translated large projects, including itself, as a search
of the web or newsgroups for vbcc and compiler will reveal (see [54] for a visually
appealing application using vbcc).

The compiler translates C files to assembly code (several backends exist). A frontend
with Unix cc compatible options is provided that calls compiler, assembler, scheduler,
and linker. This frontend is driven by a configuration file and enables support for
different target systems or assembler/linker tool chains.

2.3.2 Support for Embedded Systems

When programming embedded systems, there can be several additional requirements
for compilers. The next paragraphs will give a short description of what features are
available in vbcc and how they are implemented.

Target-Specific Extended Types

Obviously, in a retargetable compiler, the size and layout of standard data types must
be controlled by the backend and also adhered to by the frontend. For example, the
code

if(65535U + 1 == 0)
a();

else

b();

has to call a() on a target with 16bit int and b() on a target with 32bit int, no
matter what size int is on the host.

This is not specific to embedded systems but rather to any retargetable compiler
able to work as a cross-compiler. For many embedded architectures, however, further
non-standard data-types are required.

As an example, many microcontrollers have special instructions supporting single
bits. To make efficient use of them, bit types must be supported. Also, many 16bit
controllers have segment registers that allow accessing more than 64KB of memory.
However, as updating the segment registers for any memory access is very expensive,
often code and/or data may be placed in special “near” sections which avoids updating
of the segment registers. As a result, a pointer to such a “near” object may occupy one
word and fit in a single register whereas a pointer to a “far” object requires two words
and registers. A frequent case on small systems is to have short pointers to data and
large pointers to functions.

vbcc allows backends to extend the type system of the frontend. This is used, for
example, in the C16X/ST10 backend to provide different pointer sizes and a bit type.

Section Attributes

When programming an embedded system, some objects usually have to be placed in
specific memory locations. For example, an interrupt service routine may have to be
located at a specific address. vbcc provides an attribute that will put an object into a
specified section (if supported by the backend and object format) which can then be
located by the linker:
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__section(".reset") reset_handler()
{
...
}

Interrupt Handlers

Interrupt service routines will be needed in almost every embedded system. While
interrupt handlers for operating systems like Unix are mostly normal C functions that
are called by the operating system, interrupt handlers for embedded systems are often
directly called by the hardware.

As they are not called by a C function, there are other rules for these functions
than the standard application binary interface (ABI). For example, returning from
an interrupt is usually done with a different machine instruction than returning from
a subroutine. Also, subroutines may destroy certain register contents as the calling
function knows that they may be overwritten. However, an interrupt can preempt
the running code at any time. Therefore an interrupt handler must not destroy any
registers.

Special compiler support is needed to be able to write interrupt handlers in C rather
than assembly language. If supported by the backend, vbcc provides a special attribute
to designate an interrupt handler:

__interrupt isr_handler()
{
...
}

Inline Assembly

While most parts of an embedded system can usually be written in C, there are almost
always some exceptions. For example, accessing a peripheral module on the microcon-
troller may require a special machine instruction the compiler does not emit (because
it is not useful for standard C code).

Of course it is always possible to write a function in assembly language adhering to
the ABI required by the compiler and call this code from C. However, this has some
disadvantages:

• The ABI of the compiler may not be completely documented or hard to under-
stand (e.g. rules for argument passing).

• Often, only a single machine instruction is needed. Creating an extra file to write
an assembly function containing the instruction is tedious.

• Calling a separately assembled function will incur some overhead of execution
time, code space, and RAM (return address).

• A function unknown to the compiler will be called and may cause significantly
worse code generation. For example, the compiler may have to assume that the
function destroys register contents or some variables.

To overcome these problems, many compilers provide some facility to include inline
assembly code inside the C source. Usually this code is pasted more or less directly
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into the output generated by the compiler. What is common amongst most compilers
is that they do not parse or understand the inline assembly code and they assume that
it behaves similar to a function call (e.g. jumping from one piece of inline assembly
to another one and returning there will confuse most compilers). The syntax differs
widely among different compilers as well as some of the following interesting points:

• Is there a way to pass arguments to the assembly code?

• Can assembly code use some temporary registers without risk that they might
collide with registers used to pass arguments?

• What optimizations can the compiler do to the inline assembly code (e.g. function
unrolling)?

• Does the compiler assume worst-case side-effects or is it possible to specify the
side-effects caused by the inline assembly?

vbcc provides inline assembly through an extended syntax for function declarations.
Internally, inline assembly is handled like a function call in vbcc. This automatically
allows special features available for functions to be applied to inline assembly without
the need for extra work. For example, the following declaration specifies an inline
assembly function sin which uses only register fp0 ( regsused("fp0")) and receives
its argument in register fp0. Furthermore, the assembly code to insert is " fsin fp0".

__regsused("fp0") double sin(__reg("fp0") x)=" fsin fp0";

2.3.3 Optimizations

vbcc performs a series of classical optimizations. Data-flow analysis is performed. The
following list shows the most important optimizations that are performed:

• cross-module function-inlining

• partial inlining of recursive functions

• inter-procedural data-flow analysis

• inter-procedural register-allocation

• register-allocation for global variables

• global common-subexpression-elimination

• global constant-propagation

• global copy-propagation

• dead-code-elimination

• alias-analysis

• loop-unrolling

• induction-variable elimination

• loop-invariant code-motion

• loop-reversal
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2.3.4 Cross-Module Analysis

The new optimizations presented in this thesis require analysis of an entire application
or at least an entire task. As the source code for tasks in embedded systems often is
spread across several modules (source files), a compiler must not restrict its scope to
single files to implement these optimizations.

vbcc is able to read in several source files at once and analyze and translate them
as if the entire source code is contained in just one file. Its internal data structures
allow it, for example, to discern between two static variables of the same name if they
come from different source files.

Many projects, however, are built on makefiles that expect separate compilation.
For example a makefile for a simple project consisting of two source files t1.c and t2.c
could look like this:

t1.o: t1.c
$(CC) $(CCOPTS) -c -o t1.o t1.c

t2.o: t2.c
$(CC) $(CCOPTS) -c -o t2.o t2.c

test: t1.o t2.o
$(LD) $(LDOPTS) -o test t1.o t2.o

Such a procedure is also supported by using the frontend of vbcc. If a high opti-
mization level is specified for the frontend of vbcc, it will pass an option to vbcc, telling
it not to generate a normal object file. Instead vbcc will create a pseudo object file
that retains enough information from the source file to delay analysis and optimization
to some point later in time.

In the linking phase, the frontend will detect these pseudo objects and, instead of
passing them directly to the linker, will call vbcc once again with all the pseudo objects
to be linked at once. vbcc will optimize and translate them and the resulting object
will be linked together with all the “normal” objects to produce the final executable.
Similar schemes are used by other compilers, e.g. [128].

The makefiles will still work although every call of make will basically result in
a complete rebuild as all the real work is now done in the linking phase which is
always executed. However, with this mechanism switching from normal (and fast)
separate compilation to cross-module optimization can be done just by changing the
optimization settings for the frontend. There are only minor restrictions, e.g. it is not
possible to use different options for each module as they are translated together.
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Chapter 3

Common Optimizations

In this chapter, common standard optimizations available in current compilers and
frequently presented in textbooks and scientific papers are discussed. After an intro-
duction which discusses the usefulness of optimizing compilers in general, a series of
typical optimizations performed by optimizing compilers are presented.

Many of the typical optimizations have been developed for personal computers,
workstations and servers. In fact, most of the scientific research in the area of compiler
optimizations has targeted such machines — issues like code-size or memory require-
ments of the generated code have only recently gained attention once more. Therefore,
the question of whether the optimizations discussed are also recommendable for small
embedded systems is examined (mostly they are) and which of them are suitable to re-
duce RAM requirements. The results suggest that optimizing for RAM usage needs new
combinations of optimizations, different from those suitable for optimizing for speed or
code size.

Impact of Optimizations on RAM Usage

Most current compilers optimize for execution speed and/or code size. While reducing
code size was an important issue in the early years of compiler technology, with the
introduction of microcomputers, focus in research of compiler optimizations has mostly
been on execution speed [141]. This is reasonable, as most compiler research has been
targeted at personal computers or larger systems where code size rarely matters. How-
ever, larger code can cause slower execution, e.g. due to cache misses, in many cases.
In fact, many optimizations to improve execution speed also reduce code size.

Optimizing code size and execution speed are the classical objectives of optimiza-
tion. For the small embedded systems addressed in this thesis, however, it has been
shown in the previous chapters that there is an additional objective, namely RAM size.
There are obvious reasons why RAM usage has not been addressed in research of com-
piler optimizations. Typical optimizations will change the use of RAM only slightly by
introducing or removing (usually scalar) variables. On any but the smallest systems,
these effects can be neglected as RAM usage is dominated either by code size (if code
is loaded into RAM as it is done in most larger systems) or user data structures (which
are typically not modified by common optimizations). On a system with only 2KB of
RAM, however, a few bytes more can make a difference.

35



36 CHAPTER 3. COMMON OPTIMIZATIONS

3.1 Why Optimizing?

Quality of generated code has been an issue since the early days of compiler construc-
tion. It was not long before it was proposed to carry out optimizing transformations
automatically (see [108]). In the 1960s, smaller optimizations were included in com-
pilers [152] and the first heavily optimizing compilers were produced, e.g. the Fortran
H compiler (see [97]). Since then, much research into compiler optimizations has been
carried out (e.g. [4, 83]). Today, there are still many conferences dealing with com-
piler optimizations, e.g. the “International symposium on Code generation and opti-
mization” or, in the area of embedded systems, “Languages, Compilers and Tools for
Embedded Systems” (LCTES), the “International conference on Compilers, architec-
ture, and synthesis for embedded systems” (CASES) or the “International Workshop
on Software and Compilers for Embedded Systems” (SCOPES). Among the targets of
research are better support for new architectures and languages, or increasing the scope
of optimizations.

As the computing power of microprocessors has been increasing very fast over the
years, the usefulness of optimizing compilers is questioned regularly. At first sight, it is
understandable as optimizing compilers inherently incorporate a number of disadvan-
tages compared to their non-optimizing counterparts.

3.1.1 Disadvantages of Optimizing Compilers

The first apparent disadvantage optimizing compilers have are probably the much larger
compilation times and memory requirements. While non-optimizing compilers will on
average usually have linear complexity in time and space, optimizing compilers rarely
do better than quadratic — often with even higher theoretical worst-case complexity
in time. Faster compilation times are only possible for some languages and only with
restrictions to the optimizations performed (see [23]).

Maybe the second most obvious problem for the user of the compiler will be the
restrictions when debugging. Most compiler/debugger combinations offer either only
very limited optimizations when debugging information is selected, or the debugger
may display very confusing results.

One problem here is that most standard formats for debug information have been
designed with simple compilers in mind. For example, they only support very simple
expressions for locating variable values (e.g. constant offset to a frame-pointer register).
In an optimizing compiler, however, a variable might be in a register at some part of
the code, another register in other parts and reachable via changing offsets to a stack-
pointer at yet another part of the code.

These shortcomings can be eliminated by sophisticated formats for debug informa-
tion and (this is not always the case) debuggers that support it. For example, the
DWARF2 format (see [140]) offers a reasonable variety of possibilities that support de-
bugging code produced by optimizing compilers. Unfortunately, it is a pretty complex
specification and most debuggers seem to support only a part of the functionality that
is specified.

So, while some problems with debugging could be solved, there are others that
simply can not be eliminated with the user interface of current source-level debuggers.
For example, if variables or assignments have been removed or combined, there is no
way the debugger can show the right value of a variable at some locations. In the
following example, an optimizing compiler might just increment the parameter x (e.g.
if it is passed in a register) and return it.
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int f(int x)
{
int y = x + 1;
return y;

}

As a result, neither of the two variables x and y would be displayed correctly over the
function body. There are, of course, special cases where it would be possible to give the
debugger information that would enable it to calculate the correct value of a variable
that has been eliminated. For example, the value of an induction variable that has been
eliminated by strength-reduction (see section 3.3.7) could be calculated from a pointer
variable that has been introduced by the optimizer. In the general case, however, this
is not possible.

Also, single stepping through the source code or setting break-points on source
lines presents problems. Often machine instructions correspond to several source lines
after instruction combining or machine instructions corresponding to different source
lines are intermixed by instruction scheduling. Many optimizations destroy the one-
to-one mapping of sequences of machine instructions to source lines. If this mapping
is destroyed, neither single-stepping nor breaking at certain source-lines can work as
expected.

The previous paragraphs explained some problems for the users of optimizing com-
pilers. Another group of problems affect the developers writing the compilers and
therefore development cost and stability of compilers.

Optimizing compilers are much more complicated and error-prone than simple non-
optimizing compilers. They use a wide range of different algorithms (e.g. data-flow
algorithms, pattern-matching, dynamic-programming, sorting, searching, etc.) and
complex data-structures (e.g. trees, directed acyclic graphs, control-flow graphs, bit-
vectors, hash-tables, lists, etc.).

Often different algorithms work sequentially or even interconnected on the same
data-structures and pass information to each other. Therefore, bugs in an optimizing
compiler may show up in a different part of the compiler (e.g. a wrongly propagated
constant may be the result of corrupt data-flow information which may, in turn, be the
result of a bug in the alias-analysis algorithm).

Additionally, the global analysis in optimizing compilers often causes bugs to appear
at different parts of the translated program. For example, corrupt data-flow analysis
at the end of a loop may be the cause for an incorrectly translated statement at the
head of the loop. Furthermore, it is much harder to produce a small code snippet
that reproduces a bug. Adding statements (like printing debugging output) as well as
removing parts of code (to reduce the code to a minimum which is easier to check) may
cause changes to the generated code at locations far away.

To sum it up, the steps in isolating and fixing an optimizer bug are usually much
more complicated and not at all straight-forward like they are in a simple non-optimizing
compiler.

3.1.2 Advantages of Optimizing Compilers

So now we have seen a series of disadvantages of optimizing compilers. Their main
advantages obviously are speed and/or size of the generated code. Therefore, the justi-
fication of sophisticated optimizations depends on the importance of code quality. If the
additional efficiency delivered through extensive optimization is not needed, optimizing
compilers should better be avoided.
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The major point to support this criticism is the fast increase of computing power.
As a counterpart to “Moore’s Law” which basically states that computing power dou-
bles every 18 months due to advances in hardware technology, Proebsting postulates
that improvements in compiler optimizations double computing power every 18 years
[123]. While this is of course more a provocative anecdote than hard research, the
basic tendency surely is correct. The impact of compiler optimizations has not nearly
increased computing power as much as new hardware did. In fact, new optimizations
often tend to improve the generated code less than previous optimizations did. If cur-
rent compilers already generate code that is close to optimal then there is little room
for improvement. So it is clear that new compiler optimizations have not and will not
cause exponential improvements like hardware technology has done in the past.

On first sight, for many of today’s applications, advanced optimizations indeed
seem unnecessary. This is especially true if you are mostly familiar with typical per-
sonal computers and the most common applications like word processors, spreadsheets,
etc. In this area it can be observed that even current low-end personal computers are
powerful enough to deal with such applications. More so, the number of bugs observed
in such applications strengthens the assumption that the ease of use of development
tools and the speed of the development cycle is much more beneficial than optimization
algorithms.

On the other hand, one has to keep in mind that there are other applications
and other target domains that may have completely different requirements. Even on
standard personal computers there are highly speed-critical applications like games or
multimedia programs. Similarly, scientific number crunchers always can make use of as
much computing power as is given to them (see [18]).

Of course the system-on-chip microcontrollers which are the main subject in this
thesis also fall into this category. Here, larger memory footprints almost directly in-
fluence hardware costs by requiring larger on-chip memories or perhaps even off-chip
memory including glue logic.

Similarly, slower code often adds to costs. If the code is too slow to guarantee the
required real-time behaviour, a faster chip may have to be selected. This may become
especially problematic as higher clock-speeds usually imply more power consumption
and a higher sensitivity to electro-magnetic interference.

Even if the chosen chip is able to execute the non-optimized code fast enough
to satisfy all real-time constraints, the optimized code may still need less power as
it finishes the work in less time and therefore spends more time in idle or power-
saving mode. In many embedded applications, power-consumption is a serious issue
and therefore optimizations are desired.

As the next bigger chip may cost a few Euros more, the non-optimized code may
cost millions of Euros in high-volume production if it forces the switch to a bigger chip.
Or, equivalently, optimizations may save millions if they enable the application to use
a cheaper microcontroller. As many production compilers are usually used to compile
at least a few of such applications, this gives an estimation of how much effort might
be justified to be put into an optimizing compiler.

So we have seen that compiler optimizations are still a topic of significant interest
and of much practical use. In fact, the question of the purpose of optimizing compilers
has been put up many years before when computing power was some orders of magni-
tude smaller than what is now considered suitable [141]. Actually, the topic is brought
up regularly, see, for example, [59]. All these discussions have not changed the fact
that these days the average level of available optimizations in production compilers has
significantly and constantly increased over the years.
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3.2 Related Work

Optimizing for code space has been an important topic in early compilers (see e.g. [97])
and has become an active topic of research again, especially for embedded systems.
New approaches are, for example, presented in [10] or [44]. The problem of “over
optimization”, i.e. overly aggressive application of transformations resulting in degraded
performance is mentioned, for example, in [11]. Methods to reduce register pressure are
presented in [84]. However, these papers only consider the impact on execution speed.
Similarly, many optimizations to improve cache performance have been discussed (see,
for example, [101, 154]). A framework to examine the impact of optimizations on
cache behaviour of embedded applications is presented in [156]. Reducing the power
consumption of embedded systems by compiler optimizations has also become an active
topic of research (see, for example, [155]). However, optimizing for power consumption
is almost always identical to optimizing for execution speed as is shown in [35]. An
overview of current works dealing with memory optimization techniques for embedded
systems is presented in [121].

3.3 Discussion of selected Optimizations

Below, a selected list of probably the most used and frequently applied optimizations
is reviewed regarding their applicability for small embedded systems, especially their
impact on RAM usage. Code examples are usually written in C as the C language allows
the effect of most optimizations to be expressed in source code. Note however, that
some of these cases would rarely occur in code written by the programmer, but rather
in intermediate code, possibly after other optimizations have already been performed.

After introducing each optimization, some comments on their implementation in
vbcc will be given. The impact of several optimizations on RAM usage is measured
using the 21 parts of the C torture test (cq.c) that is described in section 4.2.3. When
evaluating a certain optimization, the corresponding transformation has been turned
off and the results are compared to those obtained with vbcc default settings (marked
“Ref.”) on highest optimization level (unless mentioned otherwise). These default set-
tings activate all optimizations apart from the most aggressive version of loop unrolling
(see section 3.3.8). Therefore, the reference is usually with the optimization on. While
this may be confusing at first, it allows the use of the same reference for all tests.

The first table (3.1) includes all test cases (with the RAM usage of each test case in
bytes computed by the compiler), while the following tables contain only those entries
where the settings that have been tested make a difference (this has to be considered
when reading the total values at the bottom of each table). The PowerPC was cho-
sen as target architecture because it is best supported by vbcc (as the optimizations
discussed here are done in a machine-independant way, similar results can be expected
for other architectures). There are very complex interactions between all the optimiza-
tions performed, and therefore side effects caused by other optimizations distort the
results somewhat. Nevertheless, this approach seems more realistic than turning off all
optimizations as a base for reference.

3.3.1 Flow Optimizations

The basic data-structure most optimization algorithms operate on, is the control-flow
graph. Its nodes represent pieces of code (usually basic blocks of intermediate code,
sometimes machine instructions, etc.). The edges are possible flows of control.
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Several optimizations working mainly on the control flow can be easily implemented
and are done by many compilers. For example, code which is unreachable will be
removed and branches to other branches or branches around branches will be simplified.

For example, the following code

void f(int x, int y)
{
if(x > y)
goto label1;

q();
label1:
goto label2;
r();

label2:
}

can be optimized to:

void f(int x, int y)
{
if(x <= y)
q();

}

Many different control flow optimizations have been implemented for many years,
e.g. in [97]. Control flow analysis methods have been discussed for example in [5].

These optimizations usually eliminate unnecessary branch instructions and often
enable additional optimizations. Therefore, they generally increase speed and reduce
the size of the generated code. RAM space is not affected. That is why this kind of
optimizations is suitable and recommended for small embedded systems. There are
probably few or no specific considerations necessary for such systems.

vbcc always performs a series of control-flow optimizations when building a control
flow graph. Also, several such transformations are spread over several optimization
phases and are hard to remove. Therefore, no results are provided for the effect of
those optimizations in vbcc.

3.3.2 Dead Assignment Elimination

If a variable is assigned a value which is never used (either because it is overwritten or
its lifetime ends), the assignment will be removed by this optimization. Although source
code usually contains few dead assignments, this optimization is crucial to remove code
which has become dead due to other optimizations.

For example, the following code

int x;

void f()
{
int y;
x = 1;
y = 2;
x = 3;

}
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can be optimized to:

int x;

void f()
{
x = 3;

}

This optimization has been performed by [97], other early approaches can be found
in [83] or [4]. An extension that can also remove partially dead code is presented in
[85]. Dead assignment elimination is crucial to remove “garbage” produced by other
optimizations. As it only removes code, it can have no negative effect on speed or size
of the generated code (academic examples aside). It should be done by a compiler for
small systems and can be used without specific considerations.

By default, vbcc performs standard elimination of dead assignments using data-
flow information on live variables. Table 3.1 shows how RAM usage is affected when
this optimization is turned off. As expected, the stack usage grows heavily, because
many temporary variables introduced by other optimizations are left on the stack.
The improvement in function s243 is caused by prevention of other optimizations that
increase RAM usage in this case.

Table 3.1: Dead Assignment Elimination Results

Func Ref. NDAE %
s22 0 32 n/a
s241 560 592 106
s243 320 304 95
s244 80 128 160
s25 0 64 n/a
s26 0 16 n/a
s4 16 80 500
s61 48 144 300
s626 144 464 322
s71 0 80 n/a
s72 0 304 n/a
s757 160 384 240
s7813 0 48 n/a
s714 0 3200 n/a
s715 0 48 n/a
s81 304 784 258
s84 288 336 117
s85 288 448 156
s86 32 208 650
s88 32 32 100
s9 0 16 n/a
total 2272 7712 339

Ref.: Global dead assignment elimination
NDAE: No dead assignment elimination
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3.3.3 Constant Propagation

If a variable is known to have a constant value (this includes, for example, addresses
of static objects) at some location, this optimization will replace the variable by the
constant.

For example, the following code

int f()
{
int x;
x = 1;
return x;

}

can be optimized to:

int f()
{
return 1;

}

The scope of this optimization varies from simple intra-expression to whole-program
inter-procedural analysis. Global constant propagation is presented, for example, in
[83]. Improvements can be found, for example, in [147], [28], or [29]. The optimization
does not introduce new temporaries or new code. The only situation where it has a
negative effect might be if using a constant is more expensive than using the variable
(e.g. many architectures have to use a load-from-memory instruction to load a floating-
point constant whereas a floating-point value in a variable can easily be held in a
machine register).

This optimization should be followed by constant folding and often allows additional
optimizations to be made. It is very profitable and should be used in small embedded
systems. Care has to be taken only for “large” constants as mentioned above (this is
not specific to small systems, however). Including large constants as candidates for
register-allocation prior to code-generation is one possible solution for this problem.

As the live-range of a variable might be reduced or a variable might be eliminated
altogether, constant propagation can have a positive effect on RAM usage.

By default, vbcc performs global constant propagation. All constants, including
addresses of static objects are propagated. However, constants may be assigned to
registers prior to code generation (see section 3.3.10). Table 3.2 shows the impact on
RAM usage if constant propagation is only done locally or disabled completely. The
results confirm the positive effect on RAM usage.

3.3.4 Common Subexpression Elimination

Common subexpression elimination (CSE) is perhaps one of the most typical opti-
mizations and tries to eliminate re-computation of expressions that have already been
calculated before. A simple example would be the transformation of

void f(int x, int y)
{
q(x * y, x * y);

}

into
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Table 3.2: Constant Propagation Results

Func Ref. LCP % NCP %
s243 320 320 100 288 90
s244 80 80 100 96 120
s25 0 0 n/a 32 n/a
s4 16 32 200 48 300
s61 48 48 100 64 133
s626 144 160 111 128 89
s71 0 0 n/a 64 n/a
s72 0 48 n/a 48 n/a
s757 160 160 100 176 110
s7813 0 32 n/a 80 n/a
s714 0 0 n/a 32 n/a
s81 304 320 105 304 100
s84 288 416 144 256 89
s85 288 288 100 336 117
s86 32 80 250 96 300
s9 0 0 n/a 16 n/a
total 2272 2576 113 2656 117

Ref.: Global constant propagation
LCP: Local constant propagation
NCP: No constant propagation

void f(int x, int y)
{
int tmp;

tmp = x * y;
q(tmp, tmp);

}

Many common subexpressions are less obvious like in:

extern int a[];

void f(int i)
{
return a[i + 1] + a[i + 2];

}

In this example, the calculation of i * sizeof(int) (which is hidden in C, but
necessary on machine level) is a common subexpression after re-arranging the array
access.

Also, in the examples above, the common subexpressions have been within a state-
ment. This is the simplest case and the easiest one to detect by a compiler. A somewhat
more powerful approach is to look for common subexpressions within a basic block. This
is still not much more difficult than within a statement. CSE has been performed in
[97]. Algorithms for global CSE are presented in [39] or [83]. Further improvements
have been made, e.g. partial redundancy elimination extends CSE and loop invariant
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code motion. This optimization was first presented by [104] and is still a topic of active
research (see e.g. [26, 27]).

There may also be several computations of a common subexpression, i.e.

void f(int x, int y, int a)
{
if(a){
x++;
q(x * y);

}else{
y++;
r(x * y);

}
s(x * y);

}

has to be optimized into:

void f(int x, int y, int a)
{
int tmp;
if(a){
x++;
tmp = x * y;
q(tmp);

}else{
y++;
tmp = x * y;
r(tmp);

}
s(tmp);

}

Whether the optimization is beneficial here is much less obvious. There are two
additional assignments to the tmp variable. If it can be placed in a register it may
not cost any additional machine instructions (i.e. the value of x * y can already be
calculated in this register).

If, however, there is no free register for the variable, one multiplication has been
replaced by two moves which may or may not be better depending on the target ma-
chine. The number of locations the expression is computed at influences this decision,
as well as the number of eliminated re-computations and the complexity of the oper-
ation. Also, sometimes the computations can be hoisted (in the example above, this
would be possible if the x++ and y++ statements were missing).

Unfortunately, much of this is not available when the decision is made as to whether
the transformation should be performed or not. For example, one application of the
optimization usually eliminates only an expression as contained in one instruction of
the intermediate code. Therefore, an expression like x * y * z would be eliminated
in two steps as the intermediate code probably looks like t1 := x * y; t2 := t1 *
z. Similarly, common subexpression elimination often exhibits additional opportuni-
ties for other optimizations. This is, however, also usually known only after common
subexpression elimination has indeed been performed.

By default, vbcc performs global common subexpression elimination. Table 3.3
shows the impact on RAM usage if this optimization is only done locally or disabled



3.3. DISCUSSION OF SELECTED OPTIMIZATIONS 45

completely. The results suggest that common subexpression elimination should not be
performed as long as RAM usage is the only concern. While this was expected, the
huge RAM usage in test case s626 is an unusual case. An array is filled with values
and afterwards read again (in a loop that has been unrolled). Common subexpression
elimination treats the address of each array element as common subexpression and keeps
it in a register or on the stack. Re-materialization or more conservative application of
common subexpression elimination could reduce RAM usage for this test case without
disabling the optimization.

Table 3.3: Common Subexpression Elimination Results

Func Ref. LCSE % NCSE %
s243 320 288 90 288 90
s626 144 144 100 48 33
s757 160 176 110 160 100
s81 304 304 100 256 84
s86 32 0 0 0 0
total 2272 2224 98 2064 91

Ref.: Global common subexpression elimination
LCSE: Local common subexpression elimination
NCSE: No common subexpression elimination

3.3.5 Copy Propagation

If a variable is assigned to another one, this optimization will try to use the original one
as long as it is not modified. Sometimes all uses of the second variable can be replaced
and it can be removed completely (by dead assignment elimination, see section 3.3.2).

For example, the following code

int y;

int f()
{
int x;
x = y;
return x;

}

can be optimized to:

int y;

int f()
{
return y;

}

Often, it enables additional optimizations and works together smoothly with e.g.
common subexpression elimination. The optimization can either be done fast on basic
blocks or over entire procedures requiring data-flow analysis. An early version of this
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optimization is implemented in [97], advanced versions are, for example, presented in
[143].

No new variables are introduced by this optimization and no additional code is
produced — only new opportunities for optimization may be created. Therefore, this
optimization is crucial and not critical for small embedded systems. The global version
of this optimization seems preferable.

By default, vbcc performs global copy propagation. Table 3.4 shows the impact on
RAM usage if only local propagation is performed or if the transformation is disabled
completely. The results suggest that copy propagation can reduce RAM requirements.
It must be noted, however, that copy propagation works very closely with CSE and
exposes more common subexpressions. As CSE tends to increase RAM usage, some of
the benefits of copy propagation may be overshadowed when using CSE. This can be
seen in test case s626 which is the one that was heavily influenced by CSE. If no copy
propagation is performed, CSE will also not work in that case. This explains why the
results without any copy propagation lie inbetween local and global copy propagation.

Table 3.4: Copy Propagation Results

Func Ref. LCOP % NCOP %
s243 320 320 100 288 90
s25 0 0 n/a 16 n/a
s4 16 32 200 32 200
s61 48 64 133 64 133
s626 144 144 100 64 44
s71 0 0 n/a 16 n/a
s81 304 352 116 336 111
s84 288 288 100 240 83
s85 288 336 117 336 117
s86 32 80 250 80 250
s88 32 32 100 32 100
total 2272 2448 108 2304 101

Ref.: Global copy propagation
LCOP: Local copy propagation
NCOP: No copy propagation

3.3.6 Loop-Invariant Code Motion

If the operands of a computation within a loop will not change during iterations, loop-
invariant code motion will move the computation outside of the loop, so that it will be
computed only once rather than recomputed for every iteration.

For example, the following code

void f(int x, int y)
{
int i;

for (i = 0; i < 100; i++)
q(x * y);

}
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can be optimized to:

void f(int x, int y)
{
int i, tmp = x * y;

for (i = 0; i < 100; i++)
q(tmp);

}

Simple versions of this optimizations have been implemented in [152] and [97].
In recent research, code motion is often done in the context of partial redundancy
elimination (see [104, 26, 27]). While it can be argued that programmers can do this
optimization on source-level, there are still often opportunities for loop-invariant code
motion. First, some cases are easily missed or make the source code less readable.
When optimizing on source-level, the following example

void f(int z)
{
int x, y;
for(x = 0; x < 100; x++)
for(y = 0; y < 100; y++)
q(x * x + y * y + z * z);

}

has to be rewritten to:

void f(int z)
{
int t1 = z * z;
for(x = 0; i < 100; x++){
int t2 = x * x:
for(y = 0; y < 100; y++)
q(t2 + y * y + t1);

}
}

Furthermore, expressions involving array accesses sometimes contain loop-invariant
code that can not (or only with very “ugly” code) be moved out of the loop at source-
level.

For most cases, this transformation will improve the speed of the generated code
which makes it a promising optimization if speed is a major issue. However, it in-
troduces a new temporary variable which is live across the entire loop. Unless other
variables can be eliminated (e.g. if variables used in the loop-invariant expression are
not used elsewhere in the loop), it can increase register pressure and/or increase RAM
requirements.

Table 3.5 shows no significant impact on RAM usage when vbcc performs loop
invariant code motion. Therefore, this optimization should be an option for small
embedded systems if speed is of interest. As it may increase code-size as well as RAM
requirements, it should be used with care and perhaps be turned off for small systems
where ROM/RAM size is a major consideration.
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Table 3.5: Loop Invariant Code Motion Results

Func Ref. NINV %
s81 304 320 105
total 2272 2288 101

Ref.: Loop invariant code motion
NINV: No loop invariant code motion

3.3.7 Strength-Reduction

This is an optimization applied to loops in order to replace more costly operations
(usually multiplications) by cheaper ones (typically additions). Linear functions of
an induction variable (a variable which is changed by a loop-invariant value in every
iteration) will be replaced by new induction variables. If possible, the original induction
variable will be eliminated.

As array accesses are actually composed of multiplications and additions, they often
benefit significantly by this optimization.

For example, the following code

void f(int *p)
{
int i;

for (i = 0; i < 100; i++)
p[i] = i;

}

can be optimized to:

void f(int *p)
{
int i;

for (i = 0; i < 100; i++)
*p++ = i;

}

Data-flow analysis is needed for reasonable implementation of this transformation.
Early implementations are described in [152] and [97]. A more detailed presentation
can be found in [40]. For more recent research results, see, for example, [45].

Some other optimizations are related to this one and may allow to eliminate the
induction variable in some cases. For example, if an induction variable is only used to
determine the number of iterations through the loop, it can be removed. Instead, a new
variable will be created which counts down to zero. This is generally faster and often
enables use of special decrement-and-branch or decrement-and-compare instructions.
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The following code

void f(int n)
{
int i;

for (i = 0; i < n; i++)
puts("hello");

}

can be optimized to:

void f(int n)
{
int tmp;

for(tmp = n; tmp > 0; tmp--)
puts("hello");

}

Another possibility to eliminate the induction variable is to replace the original
loop-test by a comparison of the new induction variable against the linear function of
the original loop boundary, e.g. the following code

extern int a[];

void f()
{
int i;

for (i = 0; i < 100; i++)
a[i] = 0;

}

can be transformed to:

extern int a[];

void f()
{
int *p;
for (p = &a[0]; p < &a[100]; )
*p++ = 0;

}

In many cases, speed and size of the generated code will improve after applying
strength-reduction. However, a new variable will be introduced and live across the
entire loop. Therefore, RAM requirements could increase as well as code-size. Table 3.6
shows the impact of strength reduction on RAM usage in vbcc. The reference settings
introduce new variables for all linear functions of induction variables. These base
values are compared with the results of only reducing multiplications and of completely
disabling loop strength reduction. The best results in this test have been obtained with
reducing only multiplications.
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Many microcontrollers do not offer fast multiplication. On such machines, strength
reduction should at least be an option. On the other hand, some small devices are
better at handling indices rather than pointers. For example, an 8bit microcontroller
may better be able to add an 8bit index to an invariant pointer in a 16bit index-
register rather than performing a 16bit addition to the index-register. Together with the
considerations about adding a temporary variable (like already mentioned for previous
optimizations), this optimization should be used with care for small embedded devices.

Table 3.6: Strength Reduction Results

Func Ref. SRMUL % NSR %
s84 288 208 72 208 72
s86 32 32 100 48 150
total 2272 2192 96 2208 97

Ref.: Strength reduction for addition and multiplication
SRMUL: Strength reduction for multiplication only
NSR: No strength reduction

3.3.8 Loop Unrolling

The loop overhead (such as testing the loop-condition and conditional branching) can
be reduced by replicating the loop body and reducing the number of iterations. Also,
additional optimizations between different iterations of the loop will often be enabled
by creating larger basic blocks. However, code-size can increase significantly. Loop
unrolling is described, for example, in [50] or [106], more recent research can be found
in [49] or [126].

If the number of iterations is constant and the size of the loop body is small, a loop
can be unrolled completely:

void f()
{
int i;

for (i = 0; i < 4; i++)
q(i);

}

can be optimized to:

void f()
{
q(0);
q(1);
q(2);
q(3);

}

The loop can still be unrolled several times if the number of iterations is constant
but not a multiple of the number of replications. The remaining iterations must be
unrolled separately (or a second loop must be generated).
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For example, the following code

void f()
{
int i;

for (i = 0; i < 102; i++)
q(i);

}

can be optimized to:

void f()
{
int i;
q(0);
q(1);
for(i = 2; i < 102;){
q(i++);
q(i++);
q(i++);
q(i++);

}
}

If the number of iterations is not constant, but can be calculated before entering
the loop, unrolling is still possible in some cases:

void f(int n)
{
int i;

for (i = 0; i < n; i++)
q(i);

}

can be optimized to:

void f(int n)
{
int i, tmp;

i = 0;
tmp = n & 3;
switch(tmp){
case 3:
q(i++);

case 2:
q(i++);

case 1:
q(i++);

}
while(i < n){
q(i++);
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q(i++);
q(i++);
q(i++);

}
}

In most cases, loop unrolling trades code size for speed and some compilers, e.g. for
workstations [19], do it very aggressively. When code size is an issue, it usually will not
be used. While this makes sense in most cases, there still are loops which actually may
get smaller when they are unrolled completely. If the loop-body is small and the loop is
executed only a few times (consider, for example, a 3D vector-addition) unrolling may
produce faster and smaller code.

With traditional loop unrolling, no additional memory requirements should be pro-
duced. Some compilers may choose to introduce new variables for the different unrolled
loop iterations to get better instruction level parallelism, but this borders software
pipelining (see section 3.3.11). However, loop unrolling may exhibit some opportunities
for other optimizations that may, in turn, increase RAM usage. vbcc can completely or
partially unroll loops with a constant number of iterations (which is done by default)
as well as loops where the number of iterations has to be computed at run time. A
command line parameter specifies the maximum size of the unrolled loop body in terms
of intermediate instructions. It controls the number of iterations that are unrolled de-
pending on the size of the loop. Table 3.7 shows the effect on RAM usage for the
default behaviour, no loop unrolling and unrolling of all loops (where the number of
iterations has to be computed at run time).

Loop-unrolling is relatively important if speed is a major consideration. If code size
is more important, only the first form (completely unrolling the loop) is promising in
some cases.

Table 3.7: Loop Unrolling Results

Func Ref. NUR % URA %
s243 320 288 90 320 100
s25 0 16 n/a 0 n/a
s4 16 48 300 16 100
s626 144 80 56 144 100
s72 0 0 n/a 16 n/a
s757 160 160 100 176 110
s84 288 240 83 288 100
s86 32 64 200 32 100
total 2272 2208 97 2304 101

Ref.: Unrolling of loops with a constant number of iterations
NUR: No loop unrolling
URA: Unrolling of all loops where possible

3.3.9 Function Inlining

To reduce overhead, a function call can be expanded inline. Passing parameters can be
optimized as the arguments can be directly accessed by the inlined function. Also, fur-
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ther optimizations are enabled, e.g. constant arguments can be propagated or common
subexpressions between the caller and the callee can be eliminated.

For example, the following code

int f(int n)
{
return q(&n,1);

}

void q(int *x, int y)
{
if(y > 0)
*x = *x + y;

else

abort();
}

can be optimized to:

int f(int n)
{
return n + 1;

}

void q(int *x, int y)
{
if(y > 0)
*x = *x + y;

else

abort();
}

Early descriptions can be found, for example, in [14] or [67]. More recent research
can be found, for example, in [30], [91] and [48]. Function inlining usually improves
speed of the generated code. Obviously, too much inlining can increase code size sig-
nificantly (see [91]). This is why it is often seen as an optimization not useful for small
embedded systems. Careful inlining, however, can actually decrease code size as the
body of small functions is sometimes smaller than the function call overhead imposed
by the application binary interface (ABI) which is needed to call them.

A further important point is the effect on RAM requirements. After inlining, less
RAM may be needed (see [124]). Many ABIs require that arguments are pushed on
the stack, a certain stack alignment etc. At the very least, the return address has to
be stored somewhere. Therefore, function inlining is a very promising optimization if
speed or RAM requirements are major issues. Even if code size is top priority, careful
application of this transformation can be an option.

Some further considerations about the scope of this optimization will be made
below (see section 3.3.14). Inlining in vbcc is controlled via two options that specify
the maximum size of functions to inline as well as the maximum depth of inlining (i.e.
how many passes of inlining will be done). Table 3.8 shows the impact on RAM usage
of the default setting, disabled inlining, and extensive inlining of all possible functions.
The results suggest that reasonable use of inlining can reduce memory requirements,
but overly aggressive inlining can cause side effects that eat up the benefits (which is
probably a side effect of other optimizations).
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Table 3.8: Function Inlining Results

Func Ref. NIL % ILA %
s241 560 544 97 560 100
s243 320 272 85 320 100
s25 0 16 n/a 0 n/a
s4 16 48 300 16 100
s71 0 32 n/a 0 n/a
s72 0 16 n/a 0 n/a
s757 160 176 110 160 100
s7813 0 16 n/a 0 n/a
s715 0 16 n/a 0 n/a
s81 304 320 105 608 200
s84 288 304 106 288 100
s85 288 304 106 288 100
s86 32 48 150 32 100
total 2272 2416 106 2576 113

Ref.: Normal function inlining
NIL: No function inlining
ILA: Inlining of all functions

3.3.10 Register Allocation

Mapping the most used variables to machine registers and reusing these registers ef-
ficiently surely is among the most profitable optimizations. Various algorithms have
been proposed. Theoretical aspects of local register allocation are addressed in [71] and
[98]. Actual, already rather sophisticated, implementations are described in [152] and
[97]. Use counters are described in [61]. A graph coloring register allocator is presented
in [34], possible improvements are discussed in [25]. An alternative approach is pre-
sented in [38]. Register allocation is still actively researched. For example, the scope
is extended in [146], [58] or [17] (which is presented in section 5.3.3). Also, register
allocation especially for embedded systems is researched, e.g. in [36] and [127].

Good register allocation manages to keep the most used variables in registers, re-
duces the number of stack slots used, and minimizes moves between registers by calcu-
lating values in the machine register they are needed in (e.g. for argument passing or
special-purpose machine registers).

Therefore, good register allocation benefits speed, code size, and RAM require-
ments, and is crucial for small embedded systems (as for pretty much any system).
The more difficult question, however, is what algorithm for register allocation delivers
best results for a given system. Perfect register allocation is obviously at least as hard
as finding a k-coloring for a graph, which is NP-complete. For example, graph coloring
algorithms [34, 25] have been shown to produce very good results for RISC-type ma-
chines, but they are not easily usable for architectures with a very small non-orthogonal
register set (see [73]).

vbcc does not use a graph coloring register allocation, but uses a combined approach
of local allocation and hierarchical live range splitting. Cost savings are computed,
guided by cost functions provided by the backend. Then the most promising variables
will be assigned to registers, first for the entire function, then for loops, starting with
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the outermost loops. This algorithm is similar to [38] and [97]. Its goal is to make best
use of non-orthogonal register sets in innermost loops. However, this can cause shuffling
of variables to different registers between loops. In general, this approach is tailored to
speed rather than size. Whether a graph coloring register allocator can be used in the
vbcc framework and can produce good results also for non-orthogonal architectures,
is examined in [73]. The results show that graph-coloring can be added to vbcc and
yields similar results as the original register allocator of vbcc for RISC architectures. To
obtain good results also for non-orthogonal instruction sets, significant modifications
to the classical graph-coloring register-allcoation algorithm are needed.

vbcc assigns constants to registers if that improves speed on the target, but this
can increase RAM usage. Similarly, vbcc is able to cache global variables or memory
references in a register across a loop if it can detect that they are not accessed through
aliases within the loop. This optimization can only be applied in some cases and tends
to increase RAM usage. Furthermore, vbcc takes register usage of called functions
into account to perform inter-procedural register-allocation similar to [37]. A new
extension to register allocation, specially tailored to small embedded systems using
static operating systems will be presented later in this thesis (see section 5.3.3).

Table 3.9 shows the results of register allocation in vbcc with default settings, with
register allocation turned off for constants, and with only local register allocation.
Apparently, local register allocation (i.e. only within basic blocks) is not sufficient for
good results, and the allocation of constants to registers obviously has a bad effect
on RAM usage. As vbcc performs aggressive inlining with default settings, table 3.10
shows the positive effect of inter-procedural register allocation with inlining disabled.

3.3.11 Instruction Scheduling

Most modern processors, including very small devices, use internal pipelines to be able
to increase the throughput. There are, however, often certain code-patterns that cause
pipeline-stalls. For example, an instruction depending on register r, directly after an
instruction that loads register r from memory, might cause a pipeline-stall.

The exact rules to avoid pipeline-stalls are highly processor-specific (not just architecture-
specific) and can be highly complex. Sometimes there are dependencies in the code that
make it impossible to avoid pipeline-interlocks. Often, however, reordering of the code
allows at least some reduction of stalls and increases the throughput. Many small
microcontrollers are not very sensitive to pipeline-hazards. On processors with long
pipelines, however, these effects can be significant. For example, on an Alpha 21064
processor, the following code

ldq r0,a /* load a */

stq r0,b /* copy to b */

ldq r0,c /* load c */

stq r0,d /* copy to d */

will cause pipeline stalls and therefore run much slower than this version:

ldq r0,a /* load a */

ldq r1,c /* load c */

stq r0,b /* copy to b */

stq r1,d /* copy to d */

There are various algorithms to perform instruction scheduling. The simplest case is
probably just reordering machine instructions in a basic block. More sophisticated
approaches move instructions across basic block boundaries and will not only reorder
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Table 3.9: Register Allocation Results

Func Ref. NCRA % LRA %
s22 0 0 n/a 32 n/a
s241 560 512 91 512 91
s244 80 80 100 112 140
s25 0 0 n/a 32 n/a
s26 0 0 n/a 32 n/a
s4 16 16 100 48 300
s61 48 48 100 64 133
s71 0 0 n/a 32 n/a
s72 0 0 n/a 32 n/a
s757 160 160 100 128 80
s7813 0 0 n/a 32 n/a
s714 0 0 n/a 32 n/a
s715 0 0 n/a 32 n/a
s81 304 304 100 320 105
s84 288 288 100 352 122
s85 288 288 100 304 106
s86 32 32 100 48 150
s88 32 32 100 48 150
s9 0 0 n/a 32 n/a
total 2272 2224 98 2688 118
Ref.: Global register allocation
NCRA: No register allocation for constants
LRA: Local register allocation only

Table 3.10: Inter-Procedural Register Allocation Results

Func NIL NIPRA %
s243 272 288 106
s244 80 96 120
s25 16 32 200
s626 144 160 111
s7813 16 32 200
s715 16 32 200
total 2416 2512 104

NIL: No function inlining
NIPRA: No function inlining and no inter-procedural register allocation
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code but also modify the code. See [69] or [62] for examples of scheduling algorithms.
New research with the goal of power saving can be found, for example, in [90]. Code
that reuses a register might be harder to schedule than code that uses different register
for subsequent computations, therefore a single variable may be expanded to several
different variables (see [99]).

Further variants are, for example, software pipelining (interleaving of loop-iterations,
see [89]) or branch scheduling (filling useful instructions into branch delay slots or be-
tween a compare and the corresponding branch instruction, see [100]). Those scheduling
techniques are often used together with function inlining and loop unrolling. Also, the
benefits are larger on processors with long pipelines and instruction-level parallelism.
Small embedded microcontrollers usually are not that dependant on advanced schedul-
ing techniques.

The scheduling algorithms that just reorder machine code only have a positive
effect on execution speed (although somehow limited) but no negative side-effects. The
more advanced techniques may increase code size or increase register pressure (by using
more registers) and may therefore increase RAM and ROM usage. vbcc only performs
reordering of machine instructions within basic blocks after code generation. While
this is not as effective as more sophisticated algorithms, it is guaranteed never to affect
RAM usage (and therefore no table is provided).

3.3.12 Alias Analysis

Many optimizations can only be done if it is known that two expressions are not aliased,
i.e. they do not refer to the same object. If such information is not available, worst-
case assumptions have to be made in order to create correct code. In the C language,
aliasing can occur by use of pointers. As pointers are generally a very frequently used
feature of C and also array accesses are just disguised pointer arithmetic, alias analysis
is very important. An early discussion can be found in [149], more recent research in
[96], [43] and [94].

C compilers usually can use the following methods to obtain aliasing information:

• The C language does not allow accessing an object using an lvalue of a different
type. Exceptions are accessing an object using a qualified version of the same
type and accessing an object using a character type. In the following example p1
and p2 must not point to the same object:

f(int *p1, long *p2)
{
...

}

A C compiler may assume that the source is correct and does not break this re-
quirement of the C language [79]. Unfortunately, this is certainly a lesser known
rule of the C programming language and may be broken frequently by program-
mers.

• Further information on possible aliasing can be obtained by data-flow analysis.
A typical way to obtain that information is to solve the “points-to” problem by
iterative data-flow analysis. Rules imposed by the programming language are
used to model the effects of an instruction on possible aliasing.

There are slightly different ways to calculate that information as well as different
scopes for application of this analysis, e.g. intra-procedural or inter-procedural,
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flow-sensitive or flow-insensitive. In the following example, alias analysis will
detect that p1 can only point to x or y whereas p2 can only point to z. Therefore,
it is known that p1 and p2 are not aliased.

int x[10], y[10], z[10];

int f(int a, int b, int c)
{
int *p1, *p2;

if(a < b){
p1 = &x[a];
*p1 = 0;

}else{
p1 = &y[b];

}
p2 = &z[c];

...
}

Flow-sensitive analysis would also reveal that the array x may be modified by the
code shown above, whereas the array y is not modified. Flow-insensitive analysis
does not deliver the information that p1 can only point to x at the location of
the assignment.

This analysis produces less problems with common broken code, although seri-
ously “ill-minded” constructs like using pointer arithmetic to step from one array
into another are likely to confuse such analysis.

It should be noted that due to the complexity of the “points-to” sets, the data-
flow analysis for context-sensitive alias analysis is one of the more expensive (in
terms of memory and time) data-flow problems to solve.

• The 1999 C standard provides the restrict-qualifier to help alias analysis. If a
pointer is declared with this qualifier, the compiler may assume that the object
pointed to by this pointer is only aliased by pointers which are derived from this
pointer. For a formal definition of the rules for restrict see [79].

A very useful application for restrict are function parameters. Consider the
following example:
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void cross_prod(float *restrict res,
float *restrict x,
float *restrict y)

{
res[0] = x[1] * y[2] - x[2] * y[1];
res[1] = x[2] * y[0] - x[0] * y[2];
res[2] = x[0] * y[1] - x[1] * y[0];

}

Without restrict, a compiler has to assume that writing the results through
res can modify the object pointed to by x and y. Therefore, the compiler has
to reload all the values on the right side twice. Using the hints given by the
restrict keyword allows the following transformation:

void cross_prod(float *restrict res,
float *restrict x,
float *restrict y)

{
float x0 = x[0], x1 = x[1], x2 = x[2];
float y0 = y[0], y1 = x[1], y2 = y[2];

res[0] = x1 * y2 - x2 * y1;
res[1] = x2 * y0 - x0 * y2;
res[2] = x0 * y1 - x1 * y0;

}

So far, use of the restrict keyword in existing code is rare, not many program-
mers know of that possibility and only some compilers correctly implement the
restrict qualifier. The main rationale for adding it to the C language was the
necessity to make good code generation for numerical code possible (the alias-
ing rules of C forced some serious disadvantages compared to Fortran, see [80])
— the impact on typical code for small embedded systems surely will be much
smaller. Nevertheless it is an additional source for obtaining more precise aliasing
information and should not be dismissed easily.

It is important to note that all the three sources for obtaining aliasing information
usually give additional information and no single source can subsume the others.

As alias analysis is not a transformation per se but only an analysis that helps when
applying many optimizations, it can not have a negative effect as such — additional
information is never harmful in itself. As alias analysis often enables more traditional
optimizations, it is a promising analysis for small embedded systems (and other systems
as well) if efficient code is to be generated. vbcc performs context sensitive intra-
procedural alias analysis, supported by some inter-procedural data-flow analysis.

3.3.13 Inter-Procedural Data-Flow Analysis

Many of the optimizations mentioned so far require data-flow information to be appli-
cable on a larger scope (i.e. more than basic blocks). Several of them (e.g. the loop
optimizations) always require such information to be applied to any but the most simple
cases. Data flow information can be obtained, for example, through classical iterative
algorithms or via SSA form.
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Typically, data-flow problems are solved for each procedure separately. Therefore,
worst-case assumptions are used for every procedure call. For example, in C it is usually
necessary to assume that all global and static variables as well as all dynamically
allocated memory and all local variables whose addresses have been taken may be
accessed in a function call.

Therefore, it is beneficial to perform some analysis across procedures. This can
be done by modelling the effects of a function call on the data-flow information that
is computed in a similar way as it is done for every statement or basic block. This
modelling can be done in various granularities. In the simplest case, the sets of variables
considered to be read and/or modified by a procedure call are reduced. Similarly,
tracking the registers used by a procedure enables better register allocation as values
can be stored in caller-save registers across a procedure call if the callee does not
actually use these registers.

More detailed results can be obtained if data-flow information created by the pro-
cedure is also taken into account. For example, after a call to a function that always
sets a variable to zero, constant propagation may propagate this value into the call-
ing function. Conceptually, this can be done by calculating corresponding “gen”- and
“kill”-sets for the function as is done for every basic block in conventional data-flow
analysis.

Further detailed information can be obtained if the analysis is done context-sensitive,
i.e. the “gen”- and “kill”-sets are recalculated at every call site taking into account the
actual arguments for this procedure-call.

Inter-procedural data-flow analysis is presented in [6] or [16]. Recent research can
be found, for example, in [56]. Application of inter-procedural analysis is examined in
[129]. Inter-procedural constant-propagation is presented e.g. in [28] or [29]. Register
allocation across procedures is described, for example, in [146] or [58].

Unfortunately, inter-procedural data-flow analysis can have rather big time-com-
plexity as the data-flow information for all callers may have to be recomputed every
time more precise information was calculated for a procedure. It only gets worse if
further analysis, e.g. alias analysis, is used which may, in turn, be calculated inter-
procedurally (see [149, 43, 94]). As shown in [107], the complexity of inter-procedural
data-flow analysis in the presence of recursions, pointers and aliases can be exponential.
Of course, it is possible to omit all this recalculation and obtain less precise information.

A special case are non-recursive programs. Such programs, which are typical for the
type of embedded systems that are aimed for in this thesis, have an acyclic call-graph.
By visiting all procedures in topological order (starting with the leaf functions), context-
insensitive inter-procedural data-flow analysis can be computed in a single pass without
too much additional overhead. vbcc uses this approach and computes sets of variables
and memory locations that can be read and written by functions. This information is
then used to obtain more precise data-flow information when optimizing the call-sites.

Therefore, for small embedded systems, the overhead of inter-procedural data-flow
analysis seems reasonable. Especially, as inlining usually will be used less often. Com-
pilers for bigger systems tend to inline many of the smaller leaf functions, therefore
implicitly calculating “inter-procedural” data-flow information for these inlined calls.

These leaf functions are typically the most promising candidates for inter-procedural
data-flow analysis. Complex non-leaf functions often contain too many side-effects that
can not be analyzed and do not benefit much. So, if the small leaf functions are not
inlined, e.g. due to code size constraints, inter-procedural data-flow analysis can help
significantly to generate better code for the call sites.
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3.3.14 Cross-Module Optimizations

Traditionally, compilers for many programming languages (and specifically C) translate
several source files or modules separately, producing a relocatable object file for every
input file. This separate compilation makes faster turn-around times possible. After
modifying one module, only this module has to be recompiled in many cases.

A separate program, the linker, produces an absolute executable (or ROM image in
our case) from these modules. As it performs only simple tasks of calculating addresses
of symbols and filling them in according to usually very simple rules, linking is very
fast — much faster than compiling or optimizing.

Apart from faster turn-around times, memory consumption is also reduced as the
compiler only needs memory to translate the modules, but not for the entire program.
These advantages were very important when the machines that did the compiling were
less powerful than today. Also, for huge applications running on personal computers,
workstations or servers, these factors are relevant. For the small embedded systems we
are targeting, however, these issues are less important today. The programs are not as
large because the targets have only low memory capacity, whereas the host machines
used for cross-compiling the code are several orders of magnitude more powerful these
days. Therefore, it is interesting to examine the trade-offs one gets by using separate
compilation.

• To perform function inlining as described above, the compiler needs to see the code
for the function to be inlined. Compilers looking at each source file separately,
obviously are very limited in this optimization. The ability to inline files from
other modules can be very beneficial.

• Inter-procedural data-flow analysis also requires the compiler to see the code of
the procedures called. Only if the callee can be analyzed (including its callees),
precise information can be used at the call site.

Therefore, similarly to cross-module function inlining, the more procedures the
compiler sees, the more use it can make of inter-procedural data-flow analysis.

• A further possibility to reduce size of the output is to remove objects that are not
used anywhere in the code. This includes, for example, variables that have been
forgotten or are unused because only certain functions of a library or module are
used. Also, procedures that have been inlined in every call, can be eliminated.

In simple form, this has been a feature of most linkers for a long time. Object
modules in a library are not included in the final executable unless they are
referenced. Most linkers, however, were not able to leave out parts of a module.
Some more modern linkers are able to do this, but it requires some support from
the compiler as well certain features of the object file format (e.g. every object
has to be put in something like an own section).

A compiler seeing the entire code of the application, however, is able to eliminate
all unused objects, even if the object file format does not offer further support.

Contrary to the other cross-module optimizations mentioned, however, in this
case it is really necessary to see the entire code. While the other optimizations
benefit gradually as more source code is available, the view of the entire code
basically is necessary for this optimization to work at all.

Also, especially for embedded systems, there often will be objects that are not
referenced by the source code but are nevertheless needed. For example interrupt
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handlers or version information that is supposed to be in the ROM. These objects
will have to be attributed somehow to prevent the compiler from eliminating them.

So, altogether this optimization can be useful but has some problems in practice.
If it is possible to implement it, it can be helpful though. A clever linker may be
able to achieve a similar effect more easily, but also a little bit less efficient (see,
for example, the next item).

• A further limitation of separate compilation that is less obvious, is the nega-
tive impact on machine code generation. Producing one object file for many
files rather than many separate objects, sometimes enables the compiler to select
smaller and/or faster instructions.

Assume, for example, a machine that has two instructions performing a subroutine
call. Let one instruction be a relative branch that takes up two bytes of space
and can call a subroutine which is less than 16KB distant from the location of the
branch. The other instruction could be an absolute jump that is four bytes large
and can reach any subroutine from anywhere. This is not an unusual assumption
for real architectures.

If the compiler now has to generate a call to a procedure in a separate module,
it has to generate the larger absolute jump, because it does not know whether
the target will end up close enough in the final executable. Generating an object
containing the code for the callee as well as the call-site, enables the compiler (or
assembler) to check whether each call is located close enough to its target, and
to generate the smaller branch if possible.

Similar situations exist for other instruction patterns, obviously depending on the
target architecture.

• Furthermore, additional to exploiting optimization possibilities as mentioned in
the item above, the opportunities can also be increased by smart placing of code
and objects.

For example, assuming the situation described above, placing code for called
procedures close to the call sites may exhibit more opportunities for using the
smaller branch instructions.

Also, placing static variables that are often used together close to each other, may
allow generation of better code on some architectures.

• Another lesser known optimization that is well suited to small systems is the smart
placing of static data to reduce memory overhead due to alignment requirements.

For example, many compilers will place static data in memory in the order of
appearance in the source code. As most architectures require data of certain type
to be aligned, sometimes they leave space unused between objects with different
alignment requirements.

Consider a machine with a pointer-size of four bytes and natural alignment re-
quirements (i.e. every type has to be aligned according to a multiple of its size).
Let us look at the following code:

char *input_ptr, input_idx;
char *output_ptr, output_idx;
char *copyright_string;
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Placing the variables as they appear, will yield a memory need of 20 bytes. As
the single-byte characters are followed by objects with an alignment requirement
of four bytes, three padding bytes have to be filled in after each character.

If the pointers are placed first, followed by the single-byte characters, only 14 bytes
of memory are required. Therefore, this is an easy and promising optimization
to save space. It can also be done as an intra-module optimization, but will be
more efficient when done across modules. This is especially true if there are many
different sections for different kind of variables (e.g. the PowerPC Embedded ABI
[122] specifies .text, .data, .bss, .rodata, .sdata, .sdata2, .sbss and .sbss2
just for normal data, not considering specially attributed data like vector tables
etc.).

This is a list of more promising cross-module optimizations that are recommended
for small embedded systems. Although such optimizations are relatively new in pro-
duction compilers, many of them are offering at least some cross-module optimizations
now, e.g. [70], [76] or [128]. Recent research is presented, for example, in [12], [21] or
[66]. See [41] for a discussion of the benefits of cross-module optimizations for embedded
systems.

Also, research and some products are available regarding tools that do optimizations
after link-time, i.e. on the final binary image (see, for example, [146], [63] or [2]). Such
an approach may offer some additional possibilities for optimization, but it lacks the
high-level view the compiler has. Another problem is the reliable analysis of machine
code. Usually, this is only possible if there is some knowledge about the compiler
that generated the code (see also section 4.2.3). Anyway, it underlines that there is
something to gain with cross-module optimizations.

The two major problems with these optimizations are probably the transparent
handling to the user and the unavailability of source code. C programmers are used to
the separate compilation and linking steps. They often use complicated makefiles and
build processes, parts of the application may only be available as object code etc. To get
accepted, cross-module optimizations should require no changes to this infrastructure.
It should be possible to switch them on easily, for example by a simple compiler option
as described in section 2.3.4.

This leads to the other problem, unavailability of source code. While most opti-
mizations mentioned above also work if only part of the source code is available, their
impact grows with the amount of source code that is available. For example, if a big
part of the functionality is covered in library functions that are only available as object
code, the effect is limited.

Luckily, especially for small embedded systems, this is rarely the case (see section
2.1.8). Typical code for such systems is largely written by the manufacturer of the de-
vice. Even the parts provided by other companies (for example communication drivers)
are mostly delivered in source code. Due to the stringent memory constraints, object
code often does not offer enough scalability to exactly fit the need of different users.

Source code with conditional compilation features is a prominent solution here.
Also, liability issues and frequent changes of target architectures (compared to personal
computers or servers) favour the use of source code.

To sum it up, cross-module optimizations can increase the efficiency of the generated
code and are pretty well suited, especially to small embedded systems.
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3.4 Combination of Results

To conclude the results from the last sections, all optimizations that can increase RAM
usage were turned off. This includes:

• common subexpression elimination

• loop invariant code motion

• strength reduction

• register allocation of constants

• unrolling of loops with a non-constant number of iterations

All Optimizations of vbcc that do not in themselves increase RAM usage have been
performed, especially (but not limited to) the following optimizations that often also
reduce RAM usage:

• dead assignment elimination

• function inlining

• loop unrolling

• global constant propagation

• global copy propagation

• inter-procedural register allocation

Table 3.11 shows the RAM usage that was obtained using this combination of
settings intended to reduce RAM usage. It was indeed possible to reduce total RAM
usage of the test cases by almost 20%, just by choosing a certain selection of common
optimizations and parameters. However, this gain was traded for execution speed and
code size. Also note that even with these settings, there is still one test case where RAM
usage has increased over the default optimization settings. Also note that this rather
unusual combination of optimizations is unlikely to be found in current compilers that
either optimize for speed or for code size. For example, a compiler optimizing for speed
will surely employ aggressive common subexpression elimination whereas a compiler
optimizing for code size will never perform aggressive function inlining. Therefore, a
new option “optimize for RAM usage” is proposed.

Table 3.11: Combined Results
Func Ref. Combined %
s241 560 480 86
s243 320 272 85
s626 144 48 33
s757 160 128 80
s81 304 240 79
s84 288 176 61
s86 32 48 150
total 2272 1856 82
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3.5 Conclusion

The discussion of common optimizations has revealed several key points:

• RAM (stack) usage can be affected by common compiler optimizations. While
this is not significant for large systems, it can be of interest for very small systems
with tight memory constraints.

• The three goals of execution speed, code size, and RAM usage are often mutually
exclusive.

• The combination of optimizations that resulted in least RAM consumption is
different from those that would be chosen when optimizing for speed or code size.

These tests show that optimizing for RAM usage could be a useful additional option
in compilers for small systems. Some first directions have been shown, but clearly this
only scratches the surface. There are more sophisticated versions of the optimizations
presented, and their impact can vary with the way in which they are implemented.
As the optimizations performed by vbcc are reasonably common and largely compa-
rable to those done by many other compilers, similar results are expected with most
optimizing compilers. Nevertheless, it would be interesting to conduct these tests for
other compilers. Different combinations of options could also be examined, maybe on a
per-function basis. Approaches like those described in [10], [44] or [88] could be used to
automatically find combinations of transformations that deliver the best results with
respect to RAM usage.
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Chapter 4

Stack Analysis

One important topic, which is both a safety and efficiency issue, is determining the
amount of stack space to use for an embedded system. Code size and the size of static
data can be easily calculated (e.g. by the linker) and, in fact, have to be known to
produce a working binary. While dynamic (i.e. heap-allocated) memory is very hard
to calculate, it is not used in small systems using static operating systems (see section
2.1.8).

Stack space, however, is used by almost every system and there are hardly any C
compilers that can generate code not using a stack. Although there are no recursions
in the systems considered here (see section 2.1.8), a stack is still necessary to have
reentrant code. For a multi-threaded system, using preemptive tasks and interrupts,
reentrancy is crucial. In fact, non-reentrant library routines delivered with compilers
often cause problems and have to be replaced.

On larger systems, programmers rarely have to think about the stack usage of their
applications. Usually, some of the following reasons allow them to ignore that problem:

• Most big data-structures are allocated on the heap. Basically, large arrays are the
only large data-structures that can be allocated on the stack in C (structures are
not that big unless they contain arrays). Complex (i.e. connected with references)
or dynamic data-structures can only be allocated on the heap.

So, even a few hundred KBs of stack-space is sufficient for most programs. This
amount of memory can easily be reserved as stack space by default on modern
personal computers or workstations. Even recursive programs rarely hit that
border.

• Many operating systems rely on a MMU, hence they can detect a stack overflow
and are able to extend the stack easily by mapping another page of memory. In
such systems only free memory and address-space are a limiting factor.

• On systems without a MMU, a compiler, can still provide automatic stack exten-
sion. It just has to insert additional code whenever a new stack-frame is needed
(typically at a function entry). This code has to check whether there is still
enough stack space and allocate more space. In that case, the stack does not
have to be contiguous.

On small embedded systems none of these solutions are possible. The first one
obviously gets ruled out due to the very tight memory constraints. Small systems also
do not have a MMU — even if they had one, the memory loss caused by page sizes

67



68 CHAPTER 4. STACK ANALYSIS

and alignment can not be tolerated on systems with less than 32KB of RAM (smaller
MMU pages would cause larger overhead for the MMU tables).

The stack-extension by compiler-checks can also not be used as it requires the
availability of free RAM (and adds some runtime overhead which, however, would be
more tolerable in most cases). Having unused spare RAM on such a system increases
costs. As RAM makes up a big part of the total chip cost, it is essential to use as little
RAM as possible. Therefore, a close upper bound of the stack space needed is most
desirable.

Too small stack areas, however, can be even more costly than wasted space. Stack
overflows can not only crash a system but they can make the system behave erroneously
and unpredictably in very subtle ways. Instead of a complete crash that may trigger a
watchdog that reboots the systems, stack overflows might, for example, cause an engine
to stutter or, one of the worst cases, an airbag to explode.

Even smaller failures in less important systems may cause an error lamp to be
switched on and require that the car be serviced. If such issues require the callback
of an entire series, enormous costs will be incurred by perhaps a few bytes of missing
stack space (see [86] for recent statistics on callbacks of cars).

As a result, stack analysis yielding safe upper bounds for stack usage of application
tasks is not only needed to avoid costly failures due to stack overflows, but also to make
better use of available RAM.

In this chapter, after presenting the existing practice, a good solution for this prob-
lem will be shown. A relatively simple extension to the compiler is made, making use
of sophisticated static analysis already used for the optimizing techniques discussed in
the preceding chapters. It will be shown that it is easy to implement (if the required
infrastructure for global cross-module analysis is available), relatively easy to use for
the application programmer, and delivers good and reliable results.

4.1 Existing practice and Related Work

When using a static operating system, the application programmer at least has to think
about stack sizes as he will be prompted for it during/prior the generation phase. Either
he will have to specify a single stack size or separate sizes for each task or interrupt
service routine.

At this point, many developers are rather clueless as they have no idea how much
to specify. Actually, even a rough guess requires rather intimate knowledge of the
processor architecture in use, the ABI, and the compiler generating the code. A two-
fold or more increase in stack usage for the same source code is not uncommon when
switching from one architecture (e.g. a small 16bit microprocessor) to another one (e.g.
a 32bit microprocessor).

Therefore, the problem arises every day and has to be addressed in some way. This
section will present some typical approaches that are used in practice and discuss what
tools are available to help with those issues.

4.1.1 Guessing and Testing

One common approach which is unfortunately still frequently used is simply to guess
the amount of required stack space. A value which seems plausible to the developer is
used and the system is tested. If it seems to work, the stack size is kept that way or
reduced and the test is rerun. There are several serious problems with this approach:
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• The first problem here is the “educated guess” of the developer. Frankly, few
programmers or computer scientists, can give a decent estimate on anything but
the most simple programs by looking at the source code. They usually base their
guess on prior experience on other architectures or different compilers. This may
work a few times but may fail seriously as mentioned above.

Also, as soon as the code is written by different people or even companies, or if
code from external libraries was included, it will take quite some amount of work
to even make an educated guess.

• The next problem is the reliability of tests. Usually, it is assumed that the stack
space seems to be big enough if the system passes tests. However, is it really
known that the worst-case of stack consumption was actually encountered during
the tests?

Basically, determining the situation with the highest stack usage is almost as
hard as calculating the stack size. It requires detailed analysis and is rarely done.
Instead, it is assumed that running long tests will encounter the worst-case with
a high probability.

However, especially in multi-threaded and interrupt-driven systems, the worst-
case situation may occur only under very special conditions, for example one task
may have to interrupt another task at the point of its highest stack usage and
must itself been interrupted by one specific interrupt when it has reached its own
worst-case.

If we keep in mind that often a word is pushed on the stack only for one or two
instructions (e.g. if a register has to be spilled) and the systems in question run
with clock-frequencies from several MHz up to 100MHz, the period of worst-case
stack consumption of a single task may be shorter than a microsecond. On the
other hand, the period of such tasks or interrupts may be several milliseconds for
cyclic tasks and even longer for special event-triggered interrupts.

As a result, encountering the worst-case can take arbitrary long times of test-
ing. Obviously, if the worst-case is so rare that it occurs neither during testing
nor during the life-cycle of the product, there is no real problem. However, in
situations like the automotive industry, the operating hours of a system can be
much larger than the hours of testing. Consider, for example, a small to medium
car manufacturer producing about one million cars per year. If one ECU is used
in half of this manufacturer’s products during six years of production, there are
three million of them on the road. With an average of 3000 operating hours per
car all exemplars in total may run 1010 hours — several magnitudes over what
can possibly be achieved during testing.

• Furthermore, as it was already mentioned above, stack overflows can cause very
subtle misbehaviour and are not always recognized as such. Therefore, a lot of
development time may be wasted tracing program bugs that turn out to be simply
stack overflows. Especially when operating systems are used, the application
programmer may be unable to understand the effects of the overflow, and some
system variables that may have been overwritten just cause strange behaviour of
the operating system. The author has been involved in several such cases that
turned out to be stack overflows.

Also, the stack overflow may not cause any immediately visible harm and therefore
it may go unnoticed during the testing phase. As a result, the developer thinks
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the stack was sufficient although there already was a stack overflow.

• Still, if the stack size was correctly guessed and if it is sufficient even in the
worst case, it may be significantly too high. It is very unlikely that a stack size
determined by those means is close to the real upper bound. Either it will be too
small for the worst case or it will waste quite a bit of valuable RAM.

Reliably guessing the stack size needed by a non-trivial task with a precision of
more than about +/− 16 bytes seems unrealistic even on easier architectures. So
it seems natural to assume that someone who always manages a safe upper bound
that way is likely to waste 0 to 32 bytes per task stack. With 10 to 20 tasks, it is
not uncommon to have 1/10th of the entire RAM (maybe 2–4KB) of the system
wasted just by unnecessary big stacks.

• Finally, this process of guessing and testing is also time-consuming. Changes to
the software or build environment will make it necessary to re-do most of it. New
functions added, changes of timing, different compiler options or new versions of
libraries all can significantly change the stack usage.

4.1.2 High-Water Marks

An improvement to the approach described above is the introduction of “high-water
marks”. At the startup of the system, all stacks will be filled with a certain bit-pattern
(e.g. 0xAA). Then tests will be run just as in the previous method. After those tests,
the stacks are examined and by determining how many bytes in the stack still contain
this bit-pattern, the maximum stack usage during this test-run can be calculated for
each task.

This approach has several advantages:

• The trial-and-error phase of the previous approach (reducing/increasing the stack-
size and re-running tests) to minimize stack usage is somewhat accelerated. While
the last approach only gives a qualitative result (stack seemed to be sufficient or
not), the high-water mark yields a quantitative result (how many bytes were
unused). Therefore, one gets a better starting point for trying other stack sizes.

• A stack overflow is easier to detect as all the bytes have a fixed initial value. If
the end of the stack was overwritten, a stack overflow is very likely. This may
reduce the danger of unnoticed stack overflows during testing.

However, there are still major problems with this approach:

• If the application causes a stack overflow, but does not write all bytes of the stack,
the overflow may go unnoticed. Consider, for example, the following code:

void f(int n)
{
int a[10], i;
for(i = 0; i<n; i++)
a[i] = ...

...
}
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If the stack was already nearly full, the function will further move the stack
pointer to create space for the array. However, if n was small it would perhaps
only write to the bytes outside of the stack, but would leave the actual end of the
stack untouched (assuming the stack grows downwards — otherwise a loop that
counts down would cause this behaviour).

• The problem of encountering the worst case during testing is still there, just as
in the previous approach. No improvements are made in this area.

• Similarly, the problem of wasting space is not much improved. One only obtains
the stack usage during the test runs. So there is still the question of either using
more or less this value (with the possible risk of failure during the product life-
time) or adding some amount of “safety-buffer”.

• The problem of maintainability is also not improved. After almost any modifi-
cation to the software, tool-chain etc., the tests have to be re-run in a way that
suggests at least some reasonable chance of encountering the worst-case.

4.1.3 Manual Analysis

Sometimes (usually when systems are safety-critical or RAM space seems to be too
small) a thorough manual analysis of stack usage is conducted. The machine code
(or assembly language) generated by the compiler is analyzed as well as the source
code. With a lot of work (and perhaps the limited help of some tools) a call-tree can
be constructed. Then, by extracting the stack usage of separate functions from the
generated code, a stack analysis of entire tasks is possible.

Note however, that this analysis basically has to be performed on the assembly
language or maybe even machine code level. The source code can only be used as a
reference or hint. Modern compilers perform too many transformations that destroy
any straightforward mapping from source code to object code (as has been shown in
chapter 3). Inlining of function-calls, introduction of new temporary variables and
countless other transformation will have significant impact on stack size.

Nevertheless, this is the first approach able to actually yield precise and reliable
information. However, there are many grave problems:

• First of all, there are few people who are able to execute such an analysis reliably.
It requires not only a good understanding of the application in question, but also
in-depth knowledge of the processor architecture and the code generation of the
compiler.

• Even then, it may be extremely hard to understand the code generated by a
sophisticated optimizing compiler. For example, the order of functions in the
machine code may be completely different from their order in the source code.
Functions may be eliminated or different specialized versions of one function may
exist. Add to that, the functions and variables without external linkage. Usually,
they will just have numbered labels and it is obviously extremely hard to find the
code for a static function in a large piece of optimized machine code.

• Probably the most important drawbacks are the amount of time and work that
is needed to carry out such an analysis, together with the high risk of mistakes.
Humans are still much more prone of errors than software. Optimizing compilers
are a good example here. Although they are amongst the most complex pieces
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of software ever written [106] and bugs in them are, in fact, found every now
and then, even the best programmers will make several orders of magnitude more
mistakes than they will encounter compiler bugs.

• Because such manual analysis is so much work, the fact that it pretty much has to
be redone every time there are more than trivial changes to the software, weighs
even more. The same is true for change of compiler options, compiler version or
even when switching to another compiler or target architecture.

As a result, real manual analysis (obviously most people performing the before
mentioned “guessing and testing” will tell you they were doing something like manual
analysis) is very rarely done and very expensive. Still for small and very critical projects
it may be the method of choice — especially if you do not want to trust any tools.

4.1.4 Traditional Compilers

Traditionally, C compilers have at least some knowledge about the stack usage of the
programs compiled by them, especially on a per-function basis. Standard C conforming
to the ISO 9899:1989 standard (equivalent to “ANSI C”) does not allow data of dynamic
size with automatic storage duration (i.e. on the stack). The new revision of this
standard ISO 9899:1999 [79] does support variably sized arrays with automatic storage
duration, however this standard is still not fully supported by most compilers and
dynamic arrays are not used in the systems talked about here.

Therefore, a C compiler can (and will) translate every function in a way that it
can only use a maximum constant number of bytes on the stack and will pop them all
off before the function is left again. Some ABIs even prescribe that the entire stack
space of the function will be reserved (or pushed) at the prologue of the function and
no further stack-pointer manipulations are made until the epilogue (see [122]). When
targeting such an ABI, a compiler must in fact be able to calculate the stack usage of
a function to be able to generate correct code at all.

Also, many compilers provide features like dynamic stack-checking or stack-extension.
To implement those features, the stack usage of a function must also be calculated.

So, while it is obvious that most C compilers are able to calculate this information,
there remain some questions. First, do they provide this information to the user and,
second, can they calculate the stack usage for an entire task?

Regarding the first question, many — but far from all — compilers do provide this
information in one way or the other (even if it may not always be easy to get it). It may
be written into a report file, output as a linker symbol, extracted from the assembly
code or similar.

Unfortunately most tasks — especially the complex ones where calculation of stack
usage is difficult — are not made up of single functions. They will call subfunctions,
code from other vendors, inline assembly, maybe function tables, etc. The information
is mostly useless when only available for single functions rather than the entire call
tree.

Almost all of today’s production C compilers — especially for embedded systems
— still translate programs on a file by file basis (actually, for the most part even on
a function by function basis). As a result, they are unable to build a call-tree for any
but the smallest programs (and therefore do not even try in most cases).

There are a few simple attempts to output the stack-usage for each function during
compilation and then compile them to a complete call-tree with stack-usage information
(e.g. [46, 125, 47]). A simple approach is to generate the stack usage of functions as
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linker symbols and let the linker build a call-tree and calculate the stack usage for entire
tasks.

However, there are many shortcomings to these approaches. The stack usage of
single functions and referenced linker symbols is simply not enough information for
this purpose. Even the simplest cases of calls through function pointers will confuse
such an implementation. As a result, this approach does seem much too restricted and
unreliable.

4.1.5 Post Link-Time Analyzers

To overcome the problem traditional compilers are having due to their separate com-
pilation, it was proposed to perform this analysis after linking, i.e. when a final binary
image has been produced from all modules. The idea is to read the final executable (or,
very similar, assembly code as described in [82]), reconstruct a call-tree and flow-graph
for the entire system and then compute the stack usage, for example using abstract
interpretation (see [124]). For a critical comment on abstract interpretation, see [32].
Stack usage analysis to improve dynamic stack allocation on large systems based on
machine code is presented in [66]. Commercial tools can be found in [2] and [22].

This mechanism can have several advantages:

• The entire code, including assembly parts, libraries only available as object code,
etc. can be analyzed by the tool.

• In theory, stack analysis can be done to code generated by any compiler even if
the compiler does not do any stack analysis.

There are, however, serious problems when dealing with machine code and per-
forming static analysis. First, there are many issues that can significantly complicate
constructing the control-flow and call-tree of such code. A few such examples are:

• Use of function pointers. Even though heavy use of function pointers (e.g. function
pointer variables that are passed as function arguments) should not be used in the
systems that are examined here, some simpler cases are often used. One example
is calling a function from a constant array of function pointers to implement a
state-machine.

int (*const (state_fcts[]))() = {f1, f2, f3, f4, ... };

void state_machine()
{
int state = 0;
while(1)
state = state_fcts[state]();

}

Without high-level information, it is very hard to determine that the possible
targets of such a call are the ones pointed to in the array state fcts.

It gets even more complicated if the array contains not only function pointers:

const struct {int state; void (*fp)(); } fa[] =
{1, f1, 2, f2, 3, f3, ... };
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Either very detailed analysis of the code accessing the array would be necessary or
all entries in the array that might point to executable code have to be considered
as call targets. However, in many cases this can not be detected. For example,
many embedded systems have code in memory starting from address 0 onward —
an integer like 20 would have to be considered as a possible call-target, potentially
confusing analysis beyond any repair.

Even if an access to a function-pointer array can be detected, it will usually be
impossible to determine the beginning and end of the array in many cases. After
all, there can be arbitrary code or data located around the array. The compiler
might not even use the real address of the array but an already offset one, e.g.

int (*const (state_fcts[]))() = {f1, f2, f3, f4, ... };

void state_machine()
{
int state = 0;
while(1)
state = state_fcts[state + 1]();

}

Here, the compiler could use the address state fcts + 1 (which is a constant) as
base address, saving the addition of 1 to state. Therefore, the address appearing
in the machine code is not the start of the array but rather a pointer to somewhere
inside it.

• Another tricky problem when dealing with machine code is branches into the
middle of one machine instruction. For example, on the Motorola 68k series of
processors and microcontrollers the following more or less common optimization
is used by some compilers to replace a branch instruction and get better pipeline
usage. For example, a C statement like

if(a > 5)
res = 12;

else

res = 21;

could be translated to these 68k instructions:

cmp.l #5,d1
bge l1
moveq #12,d0
bra l2

l1:
moveq #21,d0

l2:

Now, the bra l2 can be replaced by, for example, a compare instruction with an
immediate operand that is the opcode of the moveq #21,d0 instruction. Actually,
this opcode is 0x7015 yielding the following optimized code:
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cmp.l #5,d1
bge l1+2
moveq #12,d0

l1:
cmp #0x7015,d0

l2:

Note the modification of the first branch into the middle of the cmp #0x7015,d0
instruction and the removal of the unconditional branch bra l2. Actually, the
length of the code is unchanged. Only the unconditional branch has been replaced
by the first half of the new cmp-instruction.

When the first branch is taken, execution continues at the same address as in
the first version which still contains the opcode for moveq #21,d0 — only hidden
inside the compare instruction. If the branch is not taken, after executing the
first moveq, the new cmp-instruction will be executed. Assuming that the condi-
tion codes are not evaluated afterwards (which is a precondition to perform this
transformation), this instruction does not have any noticeable effect. The second
moveq is basically turned into a nop in this path.

Similar transformations are possible on many architectures with variable instruc-
tion lengths and there are, in fact, compilers actually producing such code. Con-
structing the control-flow for code like this, however, can be a problem (although
there are ways to handle it).

• The code generated for switch-case statements can also impose difficulties when
analyzing machine code. There are many different ways to generate code for such
statements.

In the simplest case, a series of compare- and branch-instructions is emitted (one
for every case). This will not be a problem. If, however, there are many cases,
many compilers will resort to other code patterns.

Series of case-labels with continuous values are often translated into jump-tables.
The value controlling the switch will be transformed into an index that is used
to fetch the corresponding entry from an array of jump targets. These targets can
be stored in some section for constant data, but are also often contained directly
after the code generated for the switch statement. Both, absolute addresses as
well as (PC)-relative addresses might be used.

Basically, the problem of analyzing this is similar to the problem of calling func-
tions through an array of function pointers. Theoretically, it is somewhat better
to analyze as the generated code usually has to do an explicit bounds check be-
fore going through the jump table which could be used to determine the array
boundaries. In practice, however, this is quite hard in the general case. More
realistically, pattern matching could be used to recognize code usually emitted
for such statements. A few remarks on pattern matching will be made below.

Many compilers also use library routines to handle switch statements. The com-
piler will emit a constant data structure consisting of the jump targets and the
values corresponding to them. The address of this data structure is then passed
to a library function together with the value controlling the switch statement.
This library function will, for example, do a linear or binary search through this
table and indirectly jump to the right target.
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Again, correctly analyzing such code seems almost only possible by recognizing
this code and putting knowledge about it into the analyzer.

• Some smaller microcontrollers use a segmented code and/or data space, e.g. a
16bit processor supporting a 24bit code space using segment registers. Addresses
may not fit into a single register or instruction, complicating work of the analyzer.
Furthermore, calling a function or returning from a function may require a se-
quence of instructions or even calls to library functions (for example the Tasking
compiler for the C16X uses library calls for indirect huge-pointer calls). Again,
analysis requires knowledge of this specific compiler’s code generation patterns
and library functions.

Apart from these problems constructing the control-flow, there are some general
problems:

• As has been shown above, many common constructs will require some kind of
pattern matching to detect them. If these patterns are changed, e.g. because
different compiler options or preconditions are set, they are likely to be missed.
Therefore the effectiveness of such pattern-matching heavily relies on intimate
knowledge of code-patterns generated by specific compilers. Usually only non-
exhaustive tests will be possible if the vendor of the stack analysis tool is not the
compiler vendor. Therefore, it is likely that the pattern-matching may sometimes
fail.

• Similarly, compilers that perform instruction scheduling may further complicate
pattern-matching. As soon as the piece of code to match is not fixed but may vary
slightly, it gets difficult to match all the right pieces without introducing some
“false positives”. There is a great danger of finding pieces of code that are very
similar to the code patterns that are searched for, but nevertheless have different
semantics. Such a case may lead to silent incorrect results which is fatal.

Certain incorrect optimizations of parts of the SPECCPU [131] benchmark suite
provide historical evidence of the problems of pattern matching code. Apparently
compilers emitted manually optimized code for certain small functions that have
high impact on the benchmark results. Tests revealed that, among other prob-
lems, this pattern-matching sometimes also matched similar but different pieces
of code and therefore resulted in corrupt code. For further details, see e.g. [109],
[132], and section 4.2.3.

• There will often be cases that can not be analyzed completely automatically, e.g.
certain calls through function-pointers. There will have to be annotations made
by the programmer. However, a tool working on machine code has no high-level
information left. It will usually not be able to tell the developer the line of
(source) code that causes the problem but rather a memory address of a machine
instruction.

An application developer has to have pretty deep insight into the processor ar-
chitecture used, the way the compiler generates code, and the entire application.
Consider, for example, that an indirect call causing problems may have been in-
side a function that got inlined into another one or it may have been inside a loop
that got unrolled.

Consider even simple code like:
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void (*const (fa1[]))()={f1, f2};
void (*const (fa2[]))()={f3, f4};

void test(int i)
{
if(i<2)
fa1[i]();

else

fa2[i-2]();
}

Probably an analyzer tool will not be able to calculate the possible call targets
itself and report two indirect calls it can not resolve. As compilers often move
around code in situations like this, it is not clear whether the first call appearing
in the machine code corresponds to the first one appearing in the source code.
To correctly annotate these calls, the user has taken a very close look at the
generated machine code to find out which of the two calls has the possible targets
f1 and f2 and which one may call f3 or f4.

While a programmer proficient in machine language may be able to handle such
a simple example, understanding larger pieces of heavily optimized compiler gen-
erated code can be extremely difficult.

Also, in the absence of function identifiers, the situation gets very tedious. While,
depending on the file format of the produced binary, exported labels may be
visible, identifiers of static functions are usually not contained in the final binary
anymore. Reconstructing the assignment between static functions and pieces of
machine code will not be easy.

If a switch statement compiled into an indirect branch is not detected by a binary
analyzer, extracting the possible jump targets from the machine code and cre-
ating annotations certainly seems way above what can be expected by a normal
application developer.

• Similarly, there is the problem of specifying these annotations. First, they usually
can not be put inside the source code (which would probably be the best place) or
the final binary. Therefore, extra files containing the annotations will be required.
However, there is no more connection to the source code.

So, even if it is known, for example, that the code contains two indirect calls
and the possible targets for each call are known, the location of these calls in
memory as well as the location of the possible targets will vary with almost every
modification of the source code, the compiler switches, new compiler versions,
etc.

Offering a mechanism that allows specification of these call targets in a manner
such that the annotations do not have to be constantly changed is a difficult
task. Reliability is especially an issue here, i.e. the question of whether a tool
will definitely detect when the annotation is no longer valid due to changes in the
code.

Some approaches available in a commercial post link-time analyzer will be dis-
cussed below.

To summarize, ease of use and maintainability are key issues here as well as reli-
ability. The problems regarding the former two issues mainly originate in the lack of
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high-level information and the assignment between machine code and source code. The
first problem is communicating the code locations that need further annotations (such
annotations will be required in most applications) in a way that is comprehensible to
the user. The second problem is giving the user the ability to specify these annotations
in a way that is easy to write, reliable, and maintainable.

Utilization of debug information might help here, but often debug information gen-
erated by compilers can not be trusted in optimizing compilation (or many compilers
refuse to generate debug information at higher optimization levels at all).

Basically such tools are nevertheless able to produce safe bounds of stack usage
for many programs, as long as they reconstruct the control- and data-flow correctly.
This is where the second problem arises. Analyzing machine code is very difficult. A
conservative tool will typically encounter too many constructs that it does not fully
understand and refuse to calculate a stack size. More aggressive tools will try to use
information on typical code pattern generated by compilers to reduce these cases. This,
however, is more prone to errors (as will be shown in test results later) and increases
the dependency of a specific compiler version.

However, such a dependency will often be problematic as compiler vendors rarely
sell older versions of compilers once a more recent version is available. When such a tool
is adapted to one compiler version, this version may already be obsolete. Therefore, it
is a major requirement that such tools must not silently produce wrong results if some
of their assumptions about the compiler are not valid.

4.1.6 Further Related Work

The following paragraphs give an overview of work that deals in some way with obtain-
ing bounds for stack space, but is not applicable to embedded C code. Especially, the
issues of function pointers and annotations — key issues that have been addressed in
this thesis — are not addressed in these works.

In the Ada [77] language, analysis of stack usage is recommended [78, 150]. Espe-
cially ADA83 was easier to analyze than C. The current ADA95 is less static and ADA
subsets are usually used when static verification or calculation of stack sizes is needed
[31].

Calculation of stack usage of a system in the presence of interrupts is discussed in
[33], however using a formal approach rather than real code. Similarly, a first-order
functional-language is examined for stack (and heap) usage in [142]. Space bounds for
functional languages are also examined in [72].

Constraints that allow calculation of space (and time) bounds for recursive functions
are presented in [20].

4.1.7 Example: AbsInt StackAnalyzer

When searching for actual products performing stack usage analysis for embedded
software, the StackAnalyzer software from AbsInt Angewandte Informatik GmbH seems
to be the most promising (and probably only) choice. AbsInt has kindly provided
versions of their StackAnalyzer for PowerPC, HC12 and C16X/ST10 microcontrollers
for evaluation.

This section will give a short overview about this tool. Later, results and compar-
isons with the stack analysis implemented for this thesis will be presented.
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Usage

StackAnalyzer can be run as an interactive graphical tool as well as a command line
tool without user interactions (if necessary control files and annotations are provided).

In interactive mode, a control center is shown in a window (see figure 4.1). Some
configuration files as well as files containing annotations can be selected here. Also, a
few options can be selected graphically. Annotations that are often needed for correct
analysis have to be edited with a text editor, though.

Figure 4.1: StackAnalyzer ControlCenter

The analysis performed by the StackAnalyzer always starts from a single entry
point. To get upper bounds of stack usage for other entry points (e.g. other tasks),
several passes are done. In interactive mode the entry point can either be selected
from a list of global symbols contained in the executable or an absolute address can be
specified (see figure 4.2).

Supported Input Formats

The StackAnalyzer basically falls into the category of post link-time analyzers. This
is true at least for the versions for PowerPC and HC12. These tools read in absolute
ELF executables for those microcontrollers which are similar to raw binary images or
hex files. Additional information may be provided in ELF files, for example section
attributes, global symbols, and perhaps debugging information.
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Figure 4.2: StackAnalyzer Entry Point Selection Window

An exception is the version of StackAnalyzer for the C16X/ST10 microcontroller.
This one does not read linked and located images but rather assembly source files. Also,
this version offers less sophisticated means for annotations and seems less polished. The
versions reading linked executables seem to provide more features and less restrictions.

All StackAnalyzer versions are advertised to work with a specific version of a specific
compiler. However, as they are fed the linked executables containing library code, inline
assembly etc., they must not rely on code generation patterns of that specific compiler.
Furthermore, compiler versions are frequently replaced by updated versions.

As long as there are no guaranteed informations about code generation of the com-
piler, the StackAnalyzer can not really rely on any assumptions about the generated
code without actually checking it. Therefore, it is expected that the StackAnalyzer
also works with other compilers producing the same output format. By recognizing
some patterns of code generated by a specific compiler, however, it may be used more
comfortably with that exact compiler. For example, it may recognize the jump tables
generated for a switch statement only in the form that one particular compiler generates
them.

Diagnostics

Diagnostics (usually error messages) are shown in a window in interactive mode or are
written to a file without user interactions. Typically, these messages will be displayed
if the StackAnalyzer is unable to construct a correct control-flow and call-tree or if it
can not calculate the stack usage for some constructs. A list of all messages was not
provided.

The locations referred to by diagnostic messages usually are displayed as addresses
of machine instructions, possibly annotated with the routine containing the instruction
and a disassembly of the instruction.
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Annotations

If the StackAnalyzer does not understand some piece of code, for example because it
can not determine the possible targets of an indirect function call, it needs annotations
to continue to work. These annotations can not be made interactively but have to be
written into several different text files.

The following annotations can be made to help StackAnalyzer construct a correct
control-flow and call-tree:

• Memory areas can be specified to be read-only, contain only data etc.

• The stack usage of external functions can be specified.

• Limits for recursions of functions can be specified.

• Targets of computed calls or branches can be specified.

To specify targets of computed calls or branches, at first the instruction to be
annotated must be identified. As mentioned above, the problem with tools dealing
with binary images is the lack of the connection to the source code. Therefore, such an
instruction can not be specified in terms of the source code (or — what would be even
better — in the source code itself).

The easiest way to specify the instruction to be annotated is to give its memory
address. This is of course supported by StackAnalyzer but imposes several problems.
Pretty much every change to the program or the build process might move the in-
struction to another memory location and render the old annotation useless (or even
seriously wrong!).

To address this problem, StackAnalyzer allows more complex expressions to specify
an instruction. These can consist of a base address specified as

• an absolute address, e.g. 0x12345678,

• a label name (which must be visible in the executable), or

• a function name (which must be described in debug information)

which can be added to a combination of n units of

• instructions,

• call instructions,

• branch instructions,

• return instructions,

• instructions not altering the control flow,

• call or branch instructions with a predictable target, or

• computed call or branch instructions.

It is the last item that is probably of most importance as computed calls are the
most common cases that need annotations. For example, an expression like

"myfunc" + 2 computed
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refers to the second computed branch in function myfunc. Using such expressions, it is
possible to write annotations that are not dependant on absolute addresses. However,
they are still quite dangerous if the compiler changes the order of branches, a computed
branch becomes a direct one (e.g. due to optimization), or an additional computed
branch is added (for example because more cases are added to a switch statement and
the compiler now chooses to use a jump table instead of a series of direct branches).

These forms of expressions described above are also available when specifying the
targets of a computed branch or call instructions. In this case, pc is allowed as an
additional base address. Furthermore, the case of a jump or function table (which
must be in read-only memory) is supported by a special construct. It is possible to
specify that a branch or call target is taken from an array that is described using the
following parameters (some of which may be omitted):

• a base address (an expression like above)

• the number of elements in the array

• the size of each array element

• the offset of the address within an array element

• the size of the address within the array element

• the endianness of the address

• a mask to filter out unused bits

• a scaling factor to multiply with the extracted address

• an expression that is added (which may be pc)

This is a very powerful method to specify indirect calls via arrays. However, it
can be very difficult and time-consuming to write such array descriptors. Also, very
detailed information about the layout of the array in memory is required.

Graphical Display

Apart from calculating bounds for stack usage, StackAnalyzer also is able to display a
graphical view of the program analyzed (at least the part that is reachable from the
specified entry point). There are different zoom options. For example, the full graph
can be viewed with functions as nodes and calling relationships as edges (see figure
4.3). The results of the abstract interpretation regarding stack usage are displayed
along with the nodes. For routines, the global effect on the stack pointer (i.e. including
callers) is displayed first — either as an interval or as a single number if the stack
modification is constant. Then the local effect on the stack pointer is displayed in the
same manner surrounded by < and >. For basic blocks or single instructions, only the
local effect on the stack pointer is displayed.

Further detail is shown when unfolding a function. Inside the function, the basic
blocks will be shown as nodes connected by control-flow edges. The effect on the stack
is now also shown per basic block.

In highest detail level, the machine instructions building a basic block can be shown
together with their effect on the stack pointer. Figure 4.4 shows both levels of detail
(strcmp x is shown in highest detail level with individual machine instructions exposed,
Proc3 is shown at basic block level). The layout, zoom factor, etc. of the graph can be
controlled using several options. The graph can be exported in several formats.
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Figure 4.3: Full Graph View
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Figure 4.4: Zoom into Graph
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4.2 High-Level Approach

All the approaches described above have serious shortcomings. The methods involving
testing and measuring rather than static analysis always trade reliability versus effi-
ciency. Either more memory is wasted by providing a safety-margin or the probability
of failure is increased.

Careful manual analysis is very hard and expensive, but tractable if enough man-
power with the required expertise is available. For the vast majority of embedded
system programming that is done these days, however, it is way out of reach.

Traditional compilers do some local static analysis, have information on high-level
language constructs and understand the code-patterns they generate. However, they
usually only see a part of the entire application as they translate files/modules more or
less separately. While modern compilers have started to perform a few optimizations
like inlining across modules, stack analysis across modules does not seem to have been
used so far. Furthermore, inline-assembly, library code, or indirect calls are a problem.

Post link-time analyzers seem to be the only serious attempt to address that problem
so far. Real commercial products (even with special support for OSEK operating
systems) are available today. By analyzing a linked binary, they have access to the
entire code and are not hampered by separate compilation, inline-assembly, or library
code. They do perform real static analysis and as long as they can construct a correct
control- and data-flow of the system, they will provide safe and tight bounds of stack
usage.

In practice, however, they are seriously handicapped by having to deal with machine-
code. Information on high-level language constructs is mostly lost and binaries are hard
to analyze. As a result, they will often need additional annotations that can be difficult
to provide.

4.2.1 Goals

The proposed solution is to put stack analysis back into the compiler and give the
compiler access to the entire source code and help it with annotations that are much
easier to provide in the source code instead of in a separate file.

From now on, it is assumed that typical applications using static operating systems
are used. They will use neither recursions nor dynamic memory management. Also,
function pointers will be used only in a restricted fashion and usually most code (even
when introduced from an external source) is provided in the form of source code (see
section 2.1.8).

Only programs written in C are considered (although most of what is said holds true
for similar languages like C++ or especially Embedded C++, [55]). Also, the focus
is only on determining the worst-case stack usage of application tasks or interrupt
service routines. It is assumed that the memory requirement of the operating system is
provided otherwise and that further calculations that may be needed to obtain the final
stack size required by the entire system are somehow done during the operating system
generation phase. This is already the case in current systems. For the operating system,
a manual analysis (perhaps aided by some tools) is tractable because it is reasonably
small and the developers of the operating system have to have in-depth knowledge of
the target architecture.

The following main goals should be achieved by the new implementation:

• The implementation should be a simple extension to the compiler, largely based
on analysis that is already performed, mainly for optimization purposes.
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• No significant penalty should be imposed on compilation times.

• The results shall be reliable. Either the analysis has to report a safe upper bound
on the stack usage or it must report failure to calculate one. The only exceptions
are serious bugs in the program to be analyzed. Obviously, invoking undefined
behaviour (as defined in the C standard) or providing wrong annotations can not
always be detected.

• Any constructs preventing a safe analysis must be diagnosed. This diagnosis
should be based on C source rather than machine code if possible.

• It must be possible to use inline assembly and library functions as long as they
are used in a controlled way and correct annotations are provided.

• Required annotations should be made on source code level, preferably in the
source code itself. They should only have to be changed when the facts of the
annotations change (e.g. when an external function is modified to use another
amount of stack space. No change should be required by recompilation with new
options or by changes to unrelated parts of the code.

• No intimate knowledge of the internal working of the compiler should be required
to write annotations.

• Failure to compute a stack usage bound should only arise in some cases:

– Recursive functions (not relevant here).

– Use of inline assembly without annotation.

– Use of an external function that is not provided as source code and is not
annotated.

– Non-trivial use of function pointers (which must not include the common
case of calling a function through a constant array of function pointers or a
switch statement implemented as jump table).

4.2.2 Implementation

A number of features available in vbcc are useful for this analysis and crucial in making
this only a small extension. However, these are general features useful for all optimizing
compilers and may well be found in many modern optimizing compilers.

• vbcc already supports a mode for cross-module optimization and allows analysis
to be extended across files.

• Intra-procedural alias-analysis is already performed, although some extension was
necessary (see below).

• The backends already keep track of local stack pointer modifications. This is used
in most backends to address local variables directly through the stack pointer
rather than requiring a separate frame pointer.

• Inline assembly as well as normal functions can have user-specified attributes.

• Jump tables for switch statements (or, in fact, series of comparison instructions)
are generated by the backend rather than by the frontend.
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The local stack analysis done by the backends is rather simple based on properties
of the intermediate code generated by vbcc and restrictions of the C language.

One important property is that every function will reset the stack pointer (not
necessarily explicitly) before returning to its caller. However, the stack pointer may
move inside the function, for example if arguments are passed on the stack or vari-
ables are spilled to the stack. Such a stack pointer modification may last over several
instructions. For example the following code

f(i)
{
q(i);
r(i);
}

is translated to the following code for the Motorola Coldfire architecture [105] (the
other architectures mentioned so far all pass the first arguments in registers):

_f:
move.l (4,a7),-(a7)
jsr _q
move.l (8,a7),-(a7)
jsr _r
addq.l #8,a7
rts

One can see that the value of i that is pushed on the stack as argument for the
call to q is left on the stack and removed only after the call to r saving one stack
pointer adjustment. Also note that the parameter i is found with different offsets from
the stack pointer (a7) as the stack pointer has moved but the absolute address of i of
course stays the same.

Actually, a stack pointer modification can also extend across several basic blocks as
in this example:

q(i)
{
g(1, i ? x(3,4):y(5), 2);
}

For Coldfire it will be translated to:

_q:
move.l #2,-(a7)
tst.l (8+l18,a7)
beq l3
move.l #4,-(a7)
move.l #3,-(a7)
jsr _x
addq.l #8,a7
bra l4

l3
move.l #5,-(a7)
jsr _y
addq.l #4,a7

l4
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move.l d0,-(a7)
move.l #1,-(a7)
jsr _g
add.l #12,a7
rts

Here it can be seen that there has been a modification made to the stack pointer
that spans several basic blocks as well as additional modifications inside the blocks
(i.e. the values that are pushed onto the stack as arguments for the calls to x and y).
Arbitrarily deep nesting could be created.

Note however, that the additional modifications within the blocks are removed
before the control-flow of these blocks joins again. This is actually the important
property that makes stack analysis relatively easy in the compiler.

As a result, the only constructs that may appear in the intermediate code that
can prevent calculation of stack usage are function calls and inline assembly (which, in
vbcc, is represented as a special function call in the intermediate code). vbcc has to
know an upper bound of stack space any called function (or inline assembly) may use
(including its callees).

The data structures of functions in vbcc have been extended to be able to store
two stack bounds (to accommodate architectures like the C16X that have two different
stacks) as well as a flag denoting whether an upper bound of stack usage for this function
is available. When a function is called, its worst case stack usage plus the current local
offset to the stack pointer must be compared to the maximum stack usage encountered
so far in this function to see whether a new maximum usage has been found. After all
intermediate code instructions have been processed in this way, a safe upper bound for
the maximum stack usage has been found.

The following reasons can be the cause of the stack size not being available at a call
instruction:

• The callee has not yet been translated and therefore no stack size has been com-
puted.

• The intermediate code call instruction refers to inline assembly rather than a
function call.

• It is an indirect call through a function pointer.

External and Recursive Functions and Inline Assembly

The first problem was basically already handled by vbcc. Before optimizing and gen-
erating a function f, vbcc will first try to optimize and generate all functions called
from f that have not yet been processed. This is done recursively and all functions are
processed in a topological order. This works as long as the call-graph does not contain
any cycles, i.e. there are no recursive function calls, and there are no external functions
for which no source code is provided.

This approach is very simple and fast. It is done in vbcc to place code of called
functions nearer to its callers if possible and to gather information about these func-
tions that is later used when optimizing the caller (see section 3.3.14). For example,
gen- and kill-sets for data-flow analysis can be computed more precisely if information
on the callee is available. Therefore, some inter-procedural data-flow analysis can be
done without any significant overhead in compilation time (basically the complexity of



4.2. HIGH-LEVEL APPROACH 89

optimizations is still mostly polynomial in the size of separate functions but linear in
the size of the total code rather than polynomial in the entire size).

As was already mentioned in section 2.1.8, recursive functions are not to be used
in applications for static operating systems. While it would be possible to implement
options to specify recursion limits and still provide some stack analysis for recursive
functions, this was omitted as it is not really within the scope of this thesis. Therefore,
this problem only occurs with external functions here.

Also, functions that are not provided with source code are reasonably rare as even
most third-party software is bought as source code. Nevertheless, the case occurs and
must be correctly diagnosed and there must be a way to deal with it.

Within the compiler, the diagnosis is simple. vbcc stores the origin (i.e. file name
and line of the source code) of each intermediate instruction to be able to emit useful
diagnosis even during optimization or code generation phases (there are actually some
intermediate instructions, e.g. created during optimization, that do not have this in-
formation but this is never the case for call instructions). Additionally, the target of a
(direct) call is obviously stored in the intermediate code and also available for diagnosis.

Therefore, the call to an external function in this example

extern void somefunc();

int main()
{
somefunc();
return 0;

}

will cause the following diagnosis:

warning 317 in line 5 of "c.c": stack information for target
<somefunc> unavailable

With the information provided it should be easy to find the cause of this warning
for the developer. However, there has to be a way to deal with this. If the source code
for this function is available, it should simply be added to the project. If it is only
provided as object code or if it is not written in C, the programmer of course will have
to determine the stack size of this function somehow (for example by manual analysis
— hopefully only small routines will not be available as C code).

vbcc offers a general mechanism that allows adding attributes to objects and types.
This was used to implement an additional attribute (actually two for architectures with
a second stack) stack that can be used to specify the stack size of a function. For the
following modified function an upper bound for stack usage will be computed without
warning:

__stack(16) extern void somefunc();

int main()
{
somefunc();
return 0;

}

As inline assembly is handled internally pretty much like a function call in vbcc,
what was said about external functions above holds true for inline assembly in the same
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way. The diagnostics are just as precise and the new stack attribute is available to
specify the maximum stack usage of inline assembly:

__stack(0) double sin(__reg("fp0") x)=" fsin fp0";

int main()
{
double one = fsin(3.14159 / 2);
return 0;

}

Targets of Computed Calls

The remaining (and larger) problem is computed calls that may also be contained in
the intermediate code. In this case, the operand of the call instruction is a dereferenced
function pointer variable. As vbcc already does intra-procedural context-sensitive alias
analysis, this data is used.

First, intermediate call instructions have been extended to store a list of possible
targets when/if they can be computed. During the alias analysis phase, vbcc tries to
compute a set of targets that any pointer may refer to. If a call instruction through a
function pointer variable is found, the possible functions the pointer may refer to, are
used as a list of targets for this call. For example, in this code

extern void f(), g(), h();

int main(int i)
{
void (*fp)();
if(i)
fp = f;

else

fp = g;
fp();

}

vbcc can detect that the call through fp will either be a call to f or to g. vbcc
performs context-sensitive alias analysis, i.e. in this example

extern void f(), g(), h();

int main(int i)
{
void (*fp)();
if(i)
fp = f;

else

fp = g;
fp();
if(i > 3)
fp = h;

fp();
}
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it will detect that the first call through fp will still either be a call to f or to g whereas
the second call could reach f, g or h. The maximum stack usage of all possible targets
is then used for computation of the stack size.

However, there are the usual limitations on data-flow analysis. If, for example,
function pointers are passed as function arguments, or global function pointer variables
are used, vbcc often will not be able to compute a safe list of all possible targets. In
the presence of these constructs, analysis is rarely possible.

As such constructs are not expected in applications for static operating systems (see
section 2.1.8), no further support has been implemented. These calls will, however, be
correctly diagnosed and no bogus stack size will be emitted. The small example

int main(void (*fp)())
{
fp();

}

will produce the diagnostic:

warning 320 in line 3 of "c.c": unable to compute call targets

It would of course be possible to provide a way to manually specify the targets of
such a call, but this was not considered of much importance. In the case that such
constructs are used it is even doubtful whether any programmer can reliably denote all
possible targets — it surely would be extremely difficult to maintain correctly during
development.

Arrays of Function Pointers

While most of theses cases can indeed be ignored when dealing with applications using
static operating systems, some special cases are used sometimes nevertheless. Notably,
as was mentioned before, function tables in constant arrays are used. Fortunately, the
C language allows the declaration of such an array as const and developers will usually
declare them correctly as otherwise the array would be put into the more expensive
RAM rather than into ROM.

The alias analysis phase of vbcc had to be extended a bit to handle these cases. As
the initializers of constant arrays are usually available, vbcc can extract all function
targets from such arrays and use them for further analysis. In this example

extern void f(), g(), h();
void (*const (fa[]))()={f, g};

main(int i)
{
fa[i]();

}

vbcc can detect automatically that only f and g can be called. No annotations
are needed. The targets obtained from array initializers are also used in further alias
analysis. Therefore, in the following example

extern void f(), g(), h(), q();
void (*const (fa[]))()={f, g};
void (*const (fb[]))()={q};

main(int i, int j)
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{
void (*fp)();
if(j)
fp = fa[i];
else

fp = fb[i];
fp();

}

vbcc detects that the call can reach f, g or q, but not h. Function pointers may
also be included in arrays of structures etc. However, all functions in the initializer
will be assumed to be possible targets. Computing somewhat more context-sensitive
information would be possible but not without some effort.

As has been mentioned above, the stack analysis built into vbcc relies on callees
being handled before their callers. To make this work also for computed calls, some
further additions had to be made.

If, for a computed call, all possible targets have been determined, but there is no
stack information for one or more targets, a warning is emitted. This diagnostic is the
same as that for a single function which was described above. Therefore, a developer
can easily find and annotate not only the function without stack information but also
the line of code where it may be called.

4.2.3 Results and Comparison

To verify the effectiveness and correctness of the new stack analysis, a few test programs
were analyzed and the results have been compared with the ones produced by the AbsInt
StackAnalyzer that was described above. Several test programs will be discussed and
analyzed with both tools. The results of the analysis as well as the problems to obtain
them will be analyzed.

Levels of Context-Sensitivity

During this test phase it was soon obvious that the actual upper limits for the stack
usage produced by both tools was always identical (with one notable exception that
will be mentioned below). This suggests that both tools provide the same level of
context-sensitivity. Tools computing the maximum stack usage only from a call tree
and local per-function stack usage would, for example, obtain less precise bounds. In
this code

int main()
{
f(1,2);
g(1,2,3,4);
return 0;

}

the call to g might happen at a point with higher stack usage (as more arguments have
been pushed — depending on the target architecture). A context-insensitive tool would
use the maximum local stack offset (i.e. the instruction calling g) plus the maximum
stack usage of all functions called (which might be f). Therefore, it would calculate
a stack usage that can, in fact, never be reached as f is not called at the point of
maximum local stack usage. StackAnalyzer as well as vbcc both take this fact into
account.
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On the other hand, some very sophisticated analysis could be imagined. In this
example

extern void a(), b(), c(), d();
void (*const (fa[]))() = {a, b, c, d};

int main(int i)
{
fa[2 * i]();
return 0;

}

only a and c are possible call targets. An analyzer that knows this might be able
to provide a tighter bound for the stack usage. Neither StackAnalyzer nor vbcc (or, in
fact, any other tool known to the author) do this kind of analysis.

Therefore, the main focus in these tests will not be on the stack bounds that have
been computed but rather on how many annotations have been necessary to obtain the
stack size upper bounds and on how these annotations are handled.

Test Environment

AbsInt has kindly provided three versions of their StackAnalyzer. Versions for the
PowerPC and HC12 which read ELF executables as input as well as a version for
the C16X/ST10 that reads assembly sources in the format of the Tasking assembler.
Although specific commercial compilers are recommended by AbsInt to be used with
StackAnalyzer, the goal was to use StackAnalyzer on code generated by vbcc to be
able to compare the results.

There is a full PowerPC backend for vbcc that can produce code in ELF format
as well as a reasonably working backend for the C16X that can also produce assembly
output in Tasking format (although this is only an option and has some restrictions —
another output format is the default for vbcc). For the HC12 there is an incomplete
backend that produces output in ELF format, but it is still rather limited and can only
translate a subset of C.

As a result, most tests were done with PowerPC code. There is a common ABI
[122] that is adhered to by vbcc as well as the compiler (DiabData 4.4b) recommended
by AbsInt. There are also no unexpected exotic code patterns generated, so the code
generated should pose no big obstacles — various versions of the DiabData compiler
might differ just as much. To verify how much StackAnalyzer benefits from code-
patterns it knows from the DiabData compiler, most tests have been run with this
compiler also.

The ABI used for the PowerPC has some restrictions regarding testing stack analysis
features. Every function will allocate all stack it needs during the function prologue.
All stack slots required for temporaries or function arguments are allocated in advance
with a single instruction. Therefore, the example for context-insensitivity that was
presented above, would have no meaning in this ABI.

To verify this feature, some of the tests have been performed also for the C16X
and HC12 architectures. However, the StackAnalyzer for the C16X reads some of its
annotations from comments in the assembly file rather than from external files. The
Tasking compiler that is suggested to be used with StackAnalyzer for C16X, offers
the possibility to write the C code as comments into the assembly output and, using
this option, it is possible to write annotations as comments into C source. vbcc, on
the other hand, does not provide this option (in an optimizing compiler there is no
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reasonably simple mapping between source code and machine code). Therefore, test
cases requiring annotations for the StackAnalyzer have not been run for the C16X.

Wherever a test case was using standard library functions, these have been anno-
tated for both tools where necessary. Function inlining and loop unrolling was always
turned off for the tests to prevent elimination of the stack analysis problem in some
cases.

Test Cases

The following test cases were used to validate and compare both tools. Some are
synthetic benchmarks that will test certain features of the analysis whereas others are
existing examples to show how the tools handle larger pieces of real code. However, the
code has been chosen such that it mostly meets the requirements for small embedded
applications, i.e. no recursions or dynamic memory management.

All the synthetic benchmarks have been compiled together with the following extra
module that provides some functions with increasing and easily identifiable stack-usage:

f()
{
int a[10],i,s;
for(i=0;i<10;i++)
a[i]=i;

for(s=0,i=10-1;i>=0;i--)
s+=a[i];

return s;
}

g()
{
int a[100],i,s;
/* analogue */

}

h()
{
int a[1000],i,s;
/* analogue */

}

The following synthetic test cases were used:

• t1.c

This is the most simple test case that was used. Just a function using some stack
space and calling a function that also uses some stack:

int main()
{
int a[10];
a[9]=0;
return f()+a[9];
}



4.2. HIGH-LEVEL APPROACH 95

• t2.c

This test case uses some inline assembly that does not use the stack. It is used
to test how simple code not generated by a C compiler is handled.

__stack(0) void asm_cee() = "\tmtspr\t80,0";

int main()
{
asm_cee();

}

• t3.c

This one tests how complicated assembly code that is hard to analyze is handled.
A small loop pushes some bytes on the stack that are afterwards cleaned up by
an addition to the stack pointer.

__stack(20) void asm_push20() =
" li 3,5\n"
"lab:\n"
" stwu 0,-4(1)\n"
" addic. 3,3,-1\n"
" bne lab\n"
" addi 1,1,20";

int main()
{
asm_push20();

}

• t4.c

A large switch statement is the main part of this test case. It will be translated
into a jump table by many compilers.

int main(int i)
{
switch(i){
case 1:
f();

case 2:
f();

case 3:
f();

case 4:
f();

case 5:
f();

case 6:
f();

case 7:
g();

case 8:
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f();
case 9:
f();

case 10:
f();

case 11:
f();

case 12:
f();

case 13:
f();

}
}

• t5.c

The reasonably common case of a constant array of function pointers is tested
here. It is basically the most simple case of such a construct.

int f(), g(), h();

int (*const (fa[]))()={f, g};

int main(int i)
{
return fa[i]();

}

• t6.c

The previous test case is made a bit more complicated as there is an array of
constant structures that contain not only function pointers but also normal num-
bers.

int f(), g(), h();

const struct {char f;int (*fp)();} fa[2]={1, f, 2, g};

int main(int i)
{
return fa[i].fp();

}

• t7.c

To check whether some context-sensitive analysis is done, this test case is used.
On architectures that push arguments on the stack during a function call, it will
call the functions g and f at different stack levels. A context-insensitive tool
might compute a larger stack size than necessary.

This test case does not make sense on the PowerPC as the compiler allocates
all stack slots for arguments in the function prologue. It is useful on the C16X,
however.
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int main()
{
return q(1,2,3,4,5,f(),g());

}

• t8.c

Limited local handling of function pointer variables is tested with this example.
Some data-flow analysis is necessary to handle the case without annotations.

int f(), g(), h();

int main(int i)
{
int (*fp)();
if(i)
fp=h;

else

fp=g;
return fp();

}

• t9.c

A bigger structure is passed as a function argument in this test case. Some
compilers might emit code that pushes data on the stack in a loop. However, none
of the compilers used in this test, did that (they all just moved the stack pointer
with one instruction before copying the argument). vbcc for the 68k/Coldfire
architecture would have done it in this case, but there is no StackAnalyzer for
this architecture.

struct {int a[40];} s;

main()
{
f(s);

}

Additionally, some larger source have been used as test cases.

• dry2 1.c

This is a somewhat modified version of the famous Dhrystone benchmark by R.
Weicker. It is distributed as an example with StackAnalyzer. The source file is
12204 bytes long and consists of 452 lines of C code.

• cq.c

This is large test program that verifies a C compiler for compliance to the C
standard (more or less). It is distributed as test case with the lcc C compiler [60].
It calls its test routines in a loop through function pointers taken from an array.

The following changes have been made to the code in order to make it resemble
an embedded program:
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– The output has been eliminated to avoid having to annotate several system
calls.

– One small recursion has been removed.
– The array of function pointers has been declared constant.

This source file is 124473 bytes long and consists of 5345 lines of C source (in-
cluding comments).

Results with PowerPC Code produced by vbcc

Table 4.1 shows the results of stack analysis on the test cases performed by vbcc as
well as by StackAnalyzer. As was already mentioned, the values of stack sizes are
almost always the same. Therefore, the major criteria for comparison is the number of
annotations needed. The less annotations it needs, the more usable a tool is. Sv denotes
the stack size calculated by vbcc, Ss the stack size computed by StackAnalyzer, Av the
number of annotations needed by vbcc and As the number of annotations required by
StackAnalyzer.

Table 4.1: Stack Analysis Results PowerPC
test case Sv Ss Av As Remarks

t1.c 56 56 0 0
t2.c 8 8 1 0 see 1)
t3.c 28 28 1 1 see 1)
t4.c 416 416 0 1 see 2)
t5.c 424 424 0 1 see 2)
t6.c 424 424 0 1 see 2)
t7.c 424 424 0 0
t8.c 4016 416 0 0 bug in StackAnalyzer, see 3)
t9.c 216 216 0 0

dry2 1.c 152 152 0 0
cq.c 576 576 0 1/n see 2), 4)

1. When there is inline-assembly included in a C file, both tools behave quite differ-
ently:

• vbcc does not understand the inline-assembly at all and always requires an
annotation that can be written as a simple attribute to the code.

• StackAnalyzer can understand most “simple” assembly constructs and there-
fore does not need any annotation in many cases — in such cases it has an
advantage. If, however, it does not understand the code like in t3.c, it can
not be annotated without re-writing the code.
While it is possible to specify the stack-usage of a routine to StackAnalyzer,
this can not be done for inlined code.

It is not clear which approach is the better solution here. The annotation required
by vbcc is usually easy to create for the person writing the code. Only few
instructions will typically be written as assembly code — complex code involving
control structures etc. should be written in C anyway.

Nevertheless, StackAnalyzer does not require any annotations for such code in
most cases and therefore is still easier to use. The cases where StackAnalyzer can
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not cope with the inline assembly are probably rare in normal application code.
However, if such a case occurs, StackAnalyzer causes much bigger problems as the
code has to be re-written or the stack usage of the entire function containing the
inline-assembly must be calculated manually and specified rather than specifying
just the stack usage of the assembly code itself.

2. In all the test cases involving tables of function pointers or jump tables pro-
duced by switch statements, StackAnalyzer needed annotations. There are some
problems with these annotations:

• Locating the corresponding construct in the source code is not easy. Stack-
Analyzer will only display the function containing the construct (which can
be wrong if the code was inlined) and the address of the machine instruction
representing the computed call or branch.
Also, specifying this instruction is somewhat dangerous as was described
above — even though StackAnalyzer certainly provides some sophisticated
methods to address such instructions (see section 4.1.7).

• To specify the array containing the target addresses, the developer must
have intimate knowledge of the layout of these tables in memory. Not only
pointer sizes, but also alignments of different types may have to be known.
In the case of the switch table or static function tables (as used in cq.c),
there are additional problems. The jump table will not have a global name
and must therefore be addressed by its address. This is, of course, hard to
find and subject to change with every new build of the system. Also, the
developer must know whether the entries are absolute, PC-relative, etc. It
is unlikely that a switch statement that is not recognized by StackAnalyzer
can be annotated in a useful and maintainable way.

3. This test case was incorrectly handled by StackAnalyzer. It tried to determine the
possible values of the function pointer, but, probably due to wrong/no data-flow
analysis, only one of the two possible targets of the computed call was recognized.
Therefore, the call-tree and the stack-usage was not computed correctly.

As a result, an incorrect (too small) stack size was displayed without any warning,
i.e. the user would not know that StackAnalyzer was unable to determine the
correct size. Figure 4.5 shows the graph output of StackAnalyzer. Although it
recognizes that there are two paths leading to the indirect call instruction (bclrl),
it assumes that always g will be called and ignores the possible call to h. Note
that only an edge to routine g is included, but not to h. AbsInt announced an
update that fixes that bug but an annotation will be required.

4. cq.c contains an indirect call that always jumps to the same function:

pfi = glork;
if((*pfi)(4) != 4){
...

}

vbcc recognizes this and optimizes it into a direct call. If this optimization is
turned off, StackAnalyzer will need an additional annotation for this call.

Furthermore, if loop-unrolling was not turned off, the main loop that calls the
separate parts of the program via a function pointer array would have been un-
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Figure 4.5: StackAnalyzer computes wrong stack
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rolled. In this case, there would have been several instances of this computed call
that would have had to be annotated when using StackAnalyzer.

Results with HC12 Code produced by vbcc

The small test cases have also been run with the HC12 versions of vbcc and StackAn-
alyzer. Basically, there were no significant changes to the results from the PowerPC.
One exception is that the HC12 backend of vbcc does not emit jump tables for switch
statements at the moment (which helps StackAnalyzer to correctly understand t4.c).
Additionally the HC12 version of StackAnalyzer does not emit bogus results for t8.c
but rather displays an error message and requires an annotation.

t7.c shows that StackAnalyzer does context-sensitive analysis. Table 4.2 shows a
list of the results from HC12 that differ somehow from the PowerPC results:

Table 4.2: Stack Analysis Results HC12
test case Sv Ss Av As Remarks

t4.c 208 208 0 0 no jump table generated
t7.c 208 208 0 0
t8.c 2008 2008 0 1 annotation required by StackAnalyzer

Results with C16X Code produced by vbcc

Finally, the small tests were also run using the C16X versions of vbcc and StackAna-
lyzer. One point that makes the C16X different is its use of two separate stacks. It has
a small hardware stack that is supported by special instructions (e.g. a call instruction
that pushes the return address on this stack). However, this stack is very limited in
internal memory and not sufficient for many programs. Therefore, the most common
memory model used on this chip uses the hardware stack for return addresses only and
uses a software stack (accessed through a general purpose register) for local variables
and function arguments.

Additionally, (in the memory model used) function pointers are 32bit whereas the
register size is only 16bit. Therefore, function pointers have to be kept in a register pair
and there is no machine instruction performing an indirect call but some instruction
sequence is needed that first pushes both parts of the return address, then pushes both
parts of the function pointer and finally executes a return from subroutine instruction.

Most tests gave the expected results. As was the case for the HC12, the C16X
backend of vbcc does not emit jump tables. Therefore, StackAnalyzer did not need
annotations for t4.c. t7.c showed that also the C16X version of StackAnalyzer does
context-sensitive analysis. The results from the C16X are shown in table 4.3.

Table 4.3: Stack Analysis Results C16X
test case Sv Ss Av As Remarks

t4.c 200/4 200/4 0 0 no jump table generated
t7.c 200/4 200/4 0 0
t8.c 2000/8 0/8 0 1 warning displayed by StackAnalyzer

Again, test case t8.c is a problem for the StackAnalyzer. vbcc generates the
following code for the indirect call:
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mov R11,#SEG l69
push R11
mov R11,#SOF l69
push R11
push R15
push R14
rets

l69:
rets

The function pointer is contained in registers R14 and R15. The first two push in-
structions will push the return address (label l69) and the third and fourth will push
the address to be called. The rets is a typical return-from-subroutine instruction that
pops an address from the stack and jumps there. In this case, it is used to implement
an indirect jump rather than a return — a common technique.

At the callee, the address of label l69 will be at the top of the stack and therefore
the callee will return to this address. The second rets instruction is the actual return
from function main. As can be seen in the graph output of StackAnalyzer, it does not
understand that mechanism and considers the first rets as the function exit and the
second one as unreachable (see figure 4.6). It will display a wrong stack size, but at
least a warning is displayed, because StackAnalyzer thinks that the function pushes
more bytes on the stack than it removes.

Using Recommended Compilers

The tests performed so far have been with code compiled by vbcc. However, other
compilers are recommended for StackAnalyzer, and StackAnalyzer has been optimized
to better understand the code generated by them. Therefore, additional tests have
been made with code compiled by those compilers (and containing debug information
where possible). Naturally, the stack size can not be compared with the results of vbcc
as the code may differ from the code generated by vbcc.

The following items have been tested:

1. Are the diagnostics better? For example, is the source line of a computed call
displayed if it has to be annotated?

2. Is StackAnalyzer able to compute the list of possible targets in simple calls
through constant arrays, i.e. does it handle t5.c without annotations?

3. Is the problem that produces a wrong stack size for t8.c on the PowerPC solved?

4. Are switch tables recognized without annotations?

The answers to the first three items are all “no”, i.e. there is no improvement if the
recommended compilers are used. The diagnostics are not better, the same annotations
are necessary for function tables and the bug with t8.c is still there.

The last item, however, has been improved. Apparently StackAnalyzer recognizes
typical code-patterns that are emitted for switch statements by those compilers. On
all three architectures t4.c was correctly analyzed without annotations. Furthermore,
AbsInt provided a small example containing function pointer tables that were auto-
matically detected by StackAnalyzer. However, the code-pattern was recognized only
with certain compiler-switches. For example, changing optimization options produced
slightly different code which was not recognized anymore. Some other problems will be
described below.
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Figure 4.6: t8.c interpretation by StackAnalyzer
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Susceptibility of Pattern-Matching

Now there is the question of whether the pattern-matching (or whatever algorithm)
used by StackAnalyzer works safely or whether it can be tricked into yielding false
results. Generally, when recognizing such code-patterns there is a trade-off between
hit-rate and safety (i.e. no false positives).

First, the C16X version was tested, as it reads assembly source directly and was the
easiest to handle. After a few attempts, the following source was soon produced which
tricked StackAnalyzer into giving false results:

T4_2_CO SECTION LDAT WORD PUBLIC ’CROM’
__swtab LABEL WORD

DW SOF _3
DW SOF _3
DW SOF _4
DW SOF _4

T4_2_CO ENDS

T4_1_PR SECTION CODE WORD PUBLIC ’CPROGRAM’
PUBLIC _main

_main PROC FAR
mov r12,#3
jmp _tricky
SUB R12,#01h
CMP R12,#01h
JMPR cc_UGT,_3

_tricky:
SHL R12,#01h
ADD R12,#__swtab
MOV R12,[R12]
JMPI cc_UC,[R12]

_4:
CALLS SEG _h,_h
rets

_3:
rets

_main ENDP
T4_1_PR ENDS

Basically, all that had to be done was to duplicate the code-pattern emitted by
the Tasking compiler for a switch-statement with two cases and insert a jump around
the range check (the part of code emitted for a switch-statement that verifies that the
argument is within the range of the case labels). StackAnalyzer ignores the possible
branch that skips the test and thinks that only the first two addresses in the jump
table can be used (which would be true if the range check was not skipped), whereas
in reality the value of the argument has been chosen to always use the fourth one.

The graph output in figure 4.7 shows the wrong interpretation of this code by
StackAnalyzer. Note that there is no edge leading to the block that calls h.

A similar attempt was made using the PowerPC version. This was a bit harder
as the code-pattern of the DiabData compiler is a bit more complicated. Also, the
StackAnalyzer for the PowerPC did not recognize the code as switch statement if there
was an unconditional branch behind the range check. However, using a conditional
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Figure 4.7: Faked Switch Statement on C16X
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jump with a condition that is always true, solved that problem and the following code
fools StackAnalyzer into producing incorrect stack usage information:

.text
swtab:

.long l3

.long l3

.long l4

.long l4
main:

mflr 0
stwu 1,-8(1)
stw 0,12(1)
li 3,3
slwi 11,3,2
addis 12,11,swtab@ha
cmpwi 3,0
bgt tricky
cmplwi 3,1
slwi 11,3,2
addis 12,11,swtab@ha
bgt 0,l3

tricky:
lwz 11,swtab@l(12)
mtctr 11
bctr

l4:
bl h

l3:
lwz 0,12(1)
mtlr 0
addi 1,1,8
blr

The graph output of StackAnalyzer in figure 4.8 shows the wrong control-flow that
is produced. Note that the block that calls h is not even displayed in the graph as
it is not considered reachable by StackAnalyzer. This can be verified when looking
at the addresses of the basic blocks. The block containing the indirect branch starts
at address 0x1800eb0 and contains three instructions (which are all four bytes on the
PowerPC). However, the next block starts at address 0x1800ec0 rather than 0x1800ebc.
This leaves a gap for exactly one instruction — the call to h.

No attempt has been made to trick the HC12 version as the recommended compiler
usually emits library code for switch-statements rather than inline code.

It can be argued that this code is artificially constructed and will not be created
by compilers or appear in normal applications. However, unless that is proven, there
is a certain level of uncertainty included in the results. Presumably these problems
are simply bugs that could be fixed. It should be possible to reliably detect certain
patterns implementing a switch statement. However, problems are likely to arise if the
compiler varies the code produced for a switch statement in a non-trivial way. While it
would still be possible to avoid false positives, annotations would be required in those
cases. In any case, there is a dependency on the compiler that has generated the code
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Figure 4.8: Faked Switch Statement on PowerPC
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that is to be analyzed.
Finally, the example that was provided by AbsInt and automatically extracted the

call targets from an array was analyzed. Basically, the following code translated from
the C statement arr2[i](); was recognized:

addis r12,r0,arr2@ha
addi r12,r12,arr2@l
rlwinm r11,r31,2,0,29
lwzx r12,r12,r11
mtspr lr,r12
blrl

The first two lines load the address of the array into a register. The third instruction
multiplies the index by four (size of a pointer), the fourth loads the pointer from the
array and the last instructions perform the actual indirect jump. The StackAnalyzer
only sees the binary code, however. Therefore, it can recognize only that the code
jumps to a location that is loaded from arr2 plus some index multiplied by four.

To obtain the possible call targets, StackAnalyzer apparently makes use of the fact
that ELF executables can still contain symbols and sizes of objects. It can check that
the base address loaded in this example corresponds to the symbol arr2 and that the
object starting at this address has a size of 48 bytes (the array in the example has
12 entries). At first, it seems this is a reasonable approach as long as the symbol
information is there.

Unfortunately, the executable does not show that the compiler really wants to load
the address of arr2 at this point. The example provided by AbsInt also contained
another function table arr1 with 12 entries that was located in front of the second
array. Changing the call

arr2 [i]();

to

i += 12;
arr2 [i - 12]();

produced the following machine code for the indirect call:

addis r12,r0,arr2-48@ha
addi r12,r12,arr2-48@l
rlwinm r11,r31,2,0,29
lwzx r12,r12,r11
mtspr lr,r12
blrl

The compiler rearranges the load from the array, making use of the fact that the address
of the array is a constant and can be combined with the -12 (-48 when multiplied by
the pointer size) from the index expression. This is a very common transformation that
most compilers will do.

Now, the machine code does not show that the compiler wants to load the address
of arr2-48 but it only contains the absolute number which, in this case, happens to
be the address of array arr1. As a result, StackAnalyzer can not distinguish between
arr1[i]() and arr2[i-12]() and will assume the former alternative, which is clearly
wrong.

In this case, StackAnalyzer silently computed incorrect results even for code that
was translated from normal C code (that actually appears in practice) by the recom-
mended compilers. Even the symbol information contained in the ELF format can not
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solve these problems. To handle this case reliably, range information on the index into
the jump table would be required. Obtaining such precise data-flow information from
machine code is very hard and impossible in many cases. StackAnalyzer does not seem
to do any such analysis. Therefore it can be assumed that with the current state of the
art it is not possible to reliably extract call targets from arrays in any but the simplest
cases. The new approach presented here handles theses cases without problems.

Conclusion

While the StackAnalyzer is a nice tool and has some advantages in certain cases, the lack
of high-level information clearly puts it behind the new approach presented here. Apart
from the cases with simple assembly code, vbcc required less or simpler annotations.
Also, the annotations needed by vbcc are easy to maintain in the source whereas the
separate files required by StackAnalyzer make it difficult to ensure that an annotation
stays valid after changes to the application or the build environment.

Also, the diagnostics of vbcc are much better because source level information is
available. In all cases, source lines and function names (also of non-external functions)
are provided rather than addresses of machine instructions.

When dealing with code produced by tools unknown to StackAnalyzer, many prob-
lems can appear, in the worst-case resulting in silent errors that lead to wrong stack
sizes. Therefore, the theoretical advantage to analyze code from different tools, assem-
bly code, libraries etc. is not there in practice.

To conclude, the high-level approach presented and implemented in this thesis seems
to be superior, although there are also some advantages to the low-level approach. For
further improvement a combined approach might be able to combine the best of both
worlds. For example, a tool similar to StackAnalyzer could analyze the stack usage of
inline assembly and pass those results to the compiler. As all the “trickier” calculations
can be done by the compiler, the low-level tool would not have to handle complex cases
or recognize code-patterns. Therefore, it would probably be possible to make it safer
as well as smaller.
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Chapter 5

Context Optimization

The previous chapters have addressed reduction of RAM usage by means of common
compiler optimizations as well as static analysis of stack usage. Although very well
suited to systems using static operating systems, these methods are of a more general
nature and also applicable to other small systems.

This chapter will now describe a new optimization method that has been developed
specifically for static operating systems and was first published in [17].

5.1 Task Contexts

While it is possible to use only very few bytes of RAM for most operating system
resources, it turns out that the memory needed to store task contexts often makes up
the biggest part of RAM usage by the operating system.

When a task is preempted and the operating system switches to another task, it
has to store all information needed to switch back to the preempted task later on.
Classically this means to store the entire register set of the processor which is available
to applications. Interrupt service routines can be viewed similarly as tasks in this
respect.

The following microcontrollers used in volume production in cars illustrate that the
task contexts can use a significant amount of available RAM (consider that 20 – 30
tasks and interrupt service routines are common figures):

• Motorola MPC555 [105]
26KB RAM
32 general-purpose-registers (32bit)
32 floating-point-registers (64bit)
⇒ task context about 384 bytes (1.44% of total RAM)

• Infineon C164CI [75]
2KB RAM
16 general-purpose-registers (16bit)
⇒ task context about 32 bytes (1.65% of total RAM)

As mentioned above, these chips are actually used in high-volume production with
static operating systems. It must be said that there are also microcontrollers using an
accumulator architecture offering only very few registers where task contexts are far
less critical:
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• Motorola 68HC912DG128 [105]
8KB RAM
1 accumulator (16bit)
2 index registers (16bit)
stack pointer, program counter, flags, ...
⇒ task context about 12 bytes (0.15% of total RAM)

However, this architecture is based on an old instruction set. In new designs, even
8bit architectures are starting to use large register sets in order to better suit compiler-
generated code:

• Atmel AVR [9]
128 bytes – 4KB RAM
32 general-purpose-register (8bit)
⇒ task context about 32 bytes (0.8%–25% of total RAM)

It can be observed that new architectures (even smallest ones) tend to have many
registers. This trend will most likely continue (see [65]). A test with several embedded
applications in [148] suggests that in most cases, only 7 – 19 registers are sufficient even
for RISC processors. Therefore, when storing a large register set, it is not unlikely to
save registers which do not (and often can not) contain a live value or are not modified
by the preempting tasks.

Many embedded systems have a relatively large number of event-triggered real-time
tasks or interrupt service routines which execute only very small pieces of code (e.g.
fetching a value from a sensor). Compiler optimizations which use a lot of registers
(inlining, unrolling, software-pipelining) are rarely used as they often increase code size.
Therefore, a large part of the tasks may use only a small part of the register set.

As a result, many systems actually waste valuable RAM for task contexts which
could be optimized. Imagine a CPU with 1000 registers: Using conventional techniques,
it would need a lot of extra RAM for task-contexts although it might, in fact, never be
necessary to store any registers at all during a context-switch.

5.2 Current Practice and Related Work

As the size of task-contexts actually matters in practice (a few bytes of RAM may
cost millions of dollars in high volume production), there are already a few attempts
to address this issue.

There have been several approaches to improve context-switch times either by soft-
ware or hardware. However, they are tailored to much bigger systems and do concen-
trate on speed rather than RAM usage (see e.g. [145, 13, 110, 66]).

Some operating systems allow specification of reduced register sets for some tasks.
A common variant is an attribute to specify that a task does not use floating-point
registers. However, this solution is neither very fine-grained nor very safe without
compiler support. A developer will usually assume that a task will not use floating
point registers as long as the source code does not contain any floating point variables
or constants.

There are, however, many cases where compilers will use floating point registers for
other purposes like in this example:

struct coordinate {int x, y;} p1, p2;
...
p1 = p2;
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On some architectures it is beneficial to use a floating point register to copy such
a structure. Therefore, specifying reduced register sets for tasks is only viable if the
compiler used actually documents how it handles the registers in question.

Another frequently used technique is to save smaller task contexts when a task
voluntarily releases the processor by calling some operating system function. Most
ABIs prescribe that any called function may destroy some register values (the “caller-
save” registers). Therefore, the compiler will never keep live values in those registers
at the point of releasing the CPU. As a result, the operating system has to store only
the other part of the register-set, the “callee-save” registers.

This technique, however, can only save some RAM for non-preemptive tasks. While
the operating system only needs to save a part of the context, the compiler will save
the caller-save registers containing live values on the stack. Execution speed of such
non-preemptive context switches is improved by register analysis in [66].

For preemptive tasks, which can also be interrupted at arbitrary times (when all
registers might contain live values), it does not reduce RAM usage at all. The space
for a full context must still be reserved for that case. Actually, there is some overhead
if the task is interrupted just before calling an operating system function. At this
point, some of the caller-save registers have already been saved on the task stack by
the compiler. Nevertheless, the operating system has to store the entire task-context
because the preemption was not caused by calling the operating system. Therefore,
some of the caller-save registers are stored twice.

5.3 Context Optimization

The new idea presented here reduces the RAM needed for task contexts through inter-
action between the compiler and the static operating system. As the system is static
and all tasks are known at generation time, it is possible to save a different register set
for each task.

When a task is preempted, only registers which contain live values and can be de-
stroyed (by preempting tasks) have to be saved. With knowledge about the scheduling
mechanism, the API of the operating system etc., the compiler can determine safe
bounds for register sets that have to be stored for each task. Furthermore, modified
register-allocation may result in smaller task-contexts without sacrificing intra-task
code quality.

Using this information for operating system generation allows the allocation of only
as much RAM as is needed by the minimized task-contexts. Obviously, the operating
system code which performs context-switches will have to be generated accordingly to
save/restore different register-sets depending on the preempted task.

For this purposes an embedded system using a static operating system can be
modelled using the set of tasks

T = {t1, ..., tn},

the register set
R = {r1, ..., rm}

and a set of code blocks
L = {l1, ..., lk}

which will be illustrated by the following example.
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5.3.1 Example

Consider the following (admittedly very small) example of a system with three tasks.
Assume fixed priority fully preemptive scheduling with the task priorities given in the
code. This implies that task t1 can be interrupted by tasks t2 and t3, task t2 can be
preempted only by task t3 and task t3 is the highest priority task which can never be
interrupted.

To illustrate some of the situations that can arise, task t2 contains a critical section
(for example obtaining a mutex using some kind of priority ceiling or priority inheritance
protocol) which prevents it from being preempted by task t3 inside this critical section.
Also, tasks t2 and t3 share some code, namely the function f.

Other situations which could lead to different combinations of preemptions would
be tasks entering a blocking state (for example, waiting for a semaphore). All these
situations can be formalized using an interference graph which will be described below.

The alloc and free comments shall indicate the beginning and end of register live
ranges. l1 – l5 are placeholders for blocks of code which do not change preemptability.
These blocks do not have to be straight-line basic blocks but can be rather arbitrary
pieces of code as long as the preemptability does not change inside. Of course, a con-
servative estimate could be used for an entire task, i.e. a context-insensitive approach.
However, this would negatively affect the benefits of the optimization. Apparently, this
partitioning into code blocks depends on the scheduling mechanism and system services
provided by the operating system.

r1 – r8 designate the register set. For example, r7 and r8 could be floating-point
registers (which would explain why they are used rather than r2 and r3) in task t1.

TASK(t1) /* prio=1 */

{
/* alloc r1, r7, r8 */

l1
/* free r1, r7, r8 */

}
TASK(t2) /* prio=2 */

{
/* alloc r1 */

l2
EnterCriticalSection();
/* alloc r2, r3 */

l3
/* free r2, r3 */

LeaveCriticalSection();
f();
/* free r1 */

}
TASK(t3) /* prio=3 */

{
/* alloc r1, r2, r3 */

l4
f();
/* free r1, r2, r3 */

}
void f()
{
/* alloc r4 */

l5 /* free r4 */

}
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Figure 5.1 illustrates the situation. There are three columns, one for each task.
In each column there are all the code blocks l1 – l5 which are executed in this task,
together with all registers that are live within each block. Note that the live registers
are task-specific for shared code. There are different registers live in l5 (i.e. the function
f) because a different set of registers is live at the different call sites of f.

As a result, the set of used (or live) registers at each block (as it will be calculated
by the compiler) is a mapping from a pair consisting of a task and a code block to a
set of registers:

U : T × L → P(R),
(t, l) 7→ {r ∈ R : r is live in block l in task t}

Additionally, there are edges from every code block in a column to all the tasks
which can preempt the task within this block. For example, task t2 can be preempted
in blocks l2 and l5 by task t3 but not in block l3 due to the critical section.

This interference graph is a mapping from a pair consisting of a task and a code
block to a set of tasks:

I : T × L → P(T ),
(t, l) 7→ {t′ ∈ T : t′ can preempt t in block l}

Different scheduling algorithms and operating systems can be modelled that way
and will have significant impact on the interference graph.

t1 t2

r1, r7, r8 r1

r1, r2, r3

r1, r4

t3

r1, r2, r3l1 l2

l3

l5

l5

l4

r1, r2, r3, r4

Figure 5.1: Interference Graph

5.3.2 Bounding Task-Contexts

With the model described above, it is possible to specify and calculate an optimized
context for each task. First, the set D(t) of all registers each task destroys, is calculated
as

D(t) :=
⋃
l∈L

U(t, l).

For the small example, one obtains:
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D(t1) = {r1, r7, r8},
D(t2) = {r1, r2, r3, r4},
D(t3) = {r1, r2, r3, r4}

When a task t is preempted, it is necessary to store all those registers which are live
and can be destroyed by any task which can preempt task t. It would be possible to
store different register sets depending on the code block where the task was preempted
(by looking at the program counter when doing a context-switch). However, this is
unlikely to give much benefit and will significantly complicate the context-switch code
in the operating system.

Therefore, for each task it is sufficient to traverse all blocks of its code, and add
to its context all registers which are live in that block and can be destroyed by any
task that can preempt it (i.e. there is a corresponding edge in the interference graph).
Formally, the task-context C(t) of a task t (i.e. the set of registers that is sufficient to
save whenever task t is preempted) can be written as:

C(t) = {r ∈ R : ∃l ∈ L, t′ ∈ I(t, l) : r ∈ U(t, l) ∩D(t′)}.

For the small example, one obtains:

C(t1) = {r1},
C(t2) = {r1, r4},
C(t3) = ∅

Only memory to store three registers is needed. Without this analysis every task-
context would need to provide space for the entire register set (3 · 8 registers in this
example). Obviously the benefit will not always be that big, but in very cost-sensitive
systems, a few bytes saved might actually help to fit an application into a smaller chip
and reduce costs significantly.

5.3.3 Inter-Task Register-Allocation

So far, the space for task-contexts has been minimized by analyzing the code already
produced for the application. The next goal is to further minimize the RAM require-
ments by already considering the task-contexts when translating the application, espe-
cially when assigning registers.

The scope of register-allocation in compilers varies from single expressions or basic
blocks to single functions or inter-procedural register-allocation (see e.g. [25, 146, 58,
106]). In this thesis, the scope will be extended to inter-task register-allocation. Similar
to inter-procedural assignment of registers which helps to reduce spilling of registers
across function-calls, inter-task assignment can help to reduce the memory needed to
store registers of preempted tasks.

The goal of this optimization is to minimize the total space of all task-contexts of a
system. As the task-contexts of tasks which can not preempt each other (for example
tasks with the same priority that do never wait) can use the same memory, the space
required to store all task-contexts is not necessarily the sum of the sizes of all contexts.

Let
s(r), r ∈ R
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be the memory requirement of each register, and

{T1, ..., Tn}

a partitioning of T , such that all tasks in a partition Ti can not preempt each other,
i.e.

∀t ∈ Ti, l ∈ L : I(t, l) ∩ (Ti \ t) = ∅.

Therefore, if M(i) is the size needed to store the largest task-context in a partition
Ti, i.e.

M(i) := max
t∈Ti

∑
r∈C(t)

s(r),

then the object of minimization is:
n∑

i=1

M(i).

Inter-task register-allocation should not negatively affect the intra-task code-generation.
Typically, it will only guide the choice between otherwise identical registers.

For the small example presented above, a possible improvement would be to replace
r1 by r5 in t2 and by r6 in t3 (assuming these registers are available). This would
minimize the task-contexts to:

C(t1) = ∅,
C(t2) = {r4},
C(t3) = ∅

Although more registers are used, the total RAM requirements would be reduced.
Unfortunately, this optimization problem is not easily solvable (as it is known, even

local register-allocation is usually NP-complete). Therefore, it is necessary to find
approximations or solutions for special cases. The scheduling algorithm and system
services offered by the operating system may affect inter-task register-allocation in
a non-trivial way. A small experimental implementation for one specific scheduling
strategy will be described below. The next chapter will present a full implementation
for a real commercial OSEK implementation.

5.4 Requirements on Compilers

To carry out these optimizations, a compiler has to be able to calculate good bounds
on the registers used in different blocks of a task. The requirements on the compiler
are very similar to those needed for the stack analysis that has been presented in the
previous chapter. It can only be achieved if a call-tree can be constructed and the
registers used are known to the compiler most of the time. Where this is not possible,
worst-case assumptions have to be made and good results are hard to obtain.

Applications using static operating systems usually are rather well suited to this
kind of static analysis. Neither recursions nor dynamic memory allocations are used
due to reasons of safety and efficiency. Also, function pointer variables are generally
not used and use of external library functions is very limited (source code is generally
available for the entire system).

These restrictions reduce some of the most difficult problems for static analysis.
However, there are still a number of requirements on compilers to obtain good results:
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• Cross-module analysis is needed as the applications are usually split across files.

• A call-tree has to be built, usually requiring data-flow- and alias-analysis.

• Tasks, the scheduling-mechanism and the operating system services have to be
known to enable construction of the interference graph.

• Side-effects (especially register-usage) of inline-assembly (if available), library-
and system-functions should be known.

While a few of these features are not yet common in most compilers, more and more
modern compilers provide at least the infrastructure (for example, cross-module-optimi-
zations) to incorporate them. Regarding the vbcc compiler, the corresponding sections
in the previous chapters apply.

5.5 Experimental Implementation and Results

This section will describe an experimental stand-alone implementation of inter-task
register-allocation and minimization of task-contexts in vbcc (MPC555 backend). Some
small benchmarks will be used to show the theoretical potential of this optimization.
A full implementation for a commercial OSEK system will be presented in the next
chapter.

For now, the operating system model shall be a fixed priority fully preemptive
scheduler without blocking or dynamic priority changes. The normal intra-task (but
inter-procedural) register-allocation of vbcc was extended to use a priority for each
register. If a choice between several otherwise identical registers has to be made by the
intra-task register-allocator, it will use the register with the highest priority.

The inter-task register-allocation modifies these register priorities for the intra-task
allocator. It processes the tasks in priority order and lowers the priorities of registers
that have been used by a task. Therefore, subsequently translated tasks will tend to
use different registers as long as appropriate unused registers are still available.

While the scheduling model considered here is rather simple, it is possible to extend
this mechanism to more complicated schedulers without too much additional effort (a
version supporting all OSEK scheduling variants will be shown in the next chapter).
Also, many systems are actually using such schedulers, especially if they have to meet
hard real-time constraints [24].

To obtain some first benchmarks, different combinations of tasks from the following
categories have been created and optimized.

rbuf: A simple task which just fetches a value from an IO port and stores it into a
ring-buffer. It uses three general-purpose registers.

mm: Normal floating-point matrix-multiplication. It uses eleven general-purpose reg-
isters and three floating-point registers.

int: A task using all general-purpose registers.

all: A task using all general-purpose registers as well as all floating-point-registers.

Classical optimizations like common-subexpression-elimination, loop-invariant code-
motion or strength-reduction have been performed. Loop-unrolling has been turned
off. Table 5.1 lists the total context sizes with and without optimization. The first
four columns show how many tasks of each category are used for a test case. All tasks
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Table 5.1: Benchmark results
nrbuf nmm nint nall RAMstd RAMopt savings

10 0 0 0 1040 16 98%
0 10 0 0 3360 296 91%
0 0 10 0 1040 936 10%
0 0 0 10 3360 3024 10%
2 2 2 4 2432 1816 25%
4 2 2 2 1968 1168 41%
4 4 2 0 1968 312 84%
6 0 4 0 1040 384 63%
0 6 0 4 3360 1344 60%
3 1 6 0 1272 596 53%

20840 9892 53%

have different priorities. The RAM requirements of each task (e.g. stack-space) are not
affected by the context-optimization.

The fifth column lists the total task-context size in bytes with conventional alloca-
tion. It is assumed that tasks which do not use floating-point are marked accordingly
by the application. A smaller context is allocated for these tasks, even without opti-
mization.

Only the general-purpose- and floating-point-registers which are available for the
application have been considered. Any special-purpose registers or registers that must
not be used by the application are ignored here. As a result, a full context of a task not
using floating-point needs 104 bytes and a full context of a task using floating-point
needs 336 bytes. Therefore, if nf denotes the number of tasks using floating-point and
ni the number of tasks using only general-purpose registers, the non-optimized context
size can be calculated as:

nf · 336 + ni · 104.

The last column lists the total task-context size using the minimized register sets
obtained from the compiler. Inter-task register-allocation was performed, but with this
simple scheduling model, it gives additional benefit only in a few cases.

It can be observed that the savings depend a lot on the constellation of tasks. As
long as almost every task uses all registers, the benefit will be small. However, with
every task that uses only a part of the register set, memory is saved.

The first four rows are rather academic as they use 10 tasks of the same category
(including the best and worst case scenarios). However, the remaining rows better
reflect typical systems with a number of tasks using the entire register sets as well as
some smaller light-weight tasks using only part of the register set.

For several of these constellations, the optimization reduces RAM usage for task-
contexts significantly. Tests with a real OSEK implementation are presented in the
next chapter.
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Chapter 6

Real OSEK Implementation

To demonstrate and verify that the techniques presented in the previous chapters are
also viable in practice, they have been used together with a real commercial OSEK im-
plementation. A specially adapted version of the vbcc compiler and a modified version
of the 3SOFT ProOSEK operating system was used on the MPC555 microcontroller.

Stack analysis, inter-task register-allocation as well as a few other minor optimiza-
tions have been performed in order to reduce the amount of RAM required by systems
built with these tools. Also, by inclusion of stack analysis, the user does not need to
specify the RAM usage of the tasks.

6.1 ProOSEK

ProOSEK, a commercial OSEK implementation produced and sold by 3SOFT GmbH,
was used to demonstrate the feasibility of the techniques presented. It conforms to
the current OSEK/VDX specifications OS 2.2, OIL 2.3 and COM 2.2.2. Versions for
many different microcontrollers exist. The MPC555 version was used here. ProOSEK
is used in the BMW Standard Core, a software architecture used for most ECUs in new
BMW cars. Also, DaimlerChrysler as well as other car manufacturers and suppliers
use ProOSEK in current products.

A graphical configuration and generation tool is delivered to the user. All standard
OSEK attributes as well as some vendor-specific options can be entered with that GUI.
These configurations are saved according to the OIL specification and OIL files can also
be loaded.

When the configuration is finished, the tool performs consistency checks. These
are, however, only performed on the configuration data and therefore only some errors
can be found. The source code of the application is not analyzed. If no inconsistencies
are detected, a specially optimized kernel code will be generated by the ProOSEK
Configurator. Many optimizations are performed to produce a small kernel suitable for
deeply embedded systems.

The kernel code is generated as compiler-specific C code, usually containing some
compiler-specific extensions or inline-assembly. The kernel code as well as the appli-
cation code are compiled (usually with the same compiler and compiler options) and
linked together to obtain the final ROM image.

The ProOSEK Configurator is delivered as Java bytecode and can therefore be run
on many host systems providing a Java virtual machine (see figure 6.1).
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Figure 6.1: ProOSEK Configurator

6.2 Implementation Details

This section describes all the changes that have been made to vbcc and ProOSEK in
order to make them work together and minimize the RAM usage of final systems.

6.2.1 Adaption of ProOSEK to vbcc

As was mentioned above, the code generated by ProOSEK contains compiler-specific
parts. To support a new compiler, some modifications are usually necessary. Often this
includes compiler-extensions, inline-assembly, ABI or assembly-language syntax. The
largest part is standard C, however.

The version of ProOSEK for the MPC555 generates code that can be compiled by
the DiabData compiler and the GNU compiler (controlled by conditional compilation).
Both compilers support the same standard ABI [122] and almost identical assembly-
language syntax. Inline assembly is used several times, but no further compiler-specific
extensions.

As vbcc supports the same ABI and assembly-language syntax as those compilers,
only some inline-assembly had to be adapted. All three compilers use different syntax
for inline-assembly. It was, however, simple to provide the necessary alternatives for
vbcc.

6.2.2 Stack Analysis

The stack analysis feature that was built into vbcc was used to compute the stack
sizes for the OSEK tasks. Therefore, the user does not have to specify a stack size
anymore as long as vbcc can determine an upper bound for the stack usage of the task.
The values calculated by vbcc are used directly to create stacks of just the size that is
needed. See chapter 4 for further details.
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All OSEK tasks (apart from endless loops) will call at least one OSEK func-
tion that results in a context-switch (TerminateTask()) and perhaps many more like
ActivateTask() or WaitEvent(). The stack usage of these functions will also be com-
puted by vbcc (the inline assembly code performing the actual context switch has been
annotated).

6.2.3 Task Attributes

Every OSEK task is written in the application code like this:

TASK(myTask)
{
...
TerminateTask();

}

The TASK keyword is implemented by use of the C preprocessor and will expand
to some implementation-specific function-definition. This macro has been modified to
contain several task attributes that are to be communicated to vbcc.

As a result, when translating a task function, vbcc knows:

• that it is a task,

• its task ID (as used internally by ProOSEK),

• its priority (as used internally by ProOSEK), and

• whether it is preemptive or non-preemptive.

This information is necessary for calculation of task-contexts and stack sizes. Also,
vbcc will handle task-functions differently when generating code. Normally, a C func-
tion has to store all callee-save registers it uses. For a task, this is not necessary as the
task can only terminate, but it will never return to any caller. Therefore, vbcc will not
save any registers in a task function.

This is especially interesting because of some oddity of the PowerPC ABI. The
machine instruction used for calling a subroutine on the PowerPC does not push a
return address on the stack but rather stores it in a special register, the so-called “link-
register”. If a function calls another function, it has to store this link-register on the
stack to preserve its return address. Now, the PowerPC ABI [122] prescribes that this
link-register is saved in the stack-frame of the caller (which leaves a stack slot free to
be used by the callee for that purpose).

As a result, when starting a task, the stack-pointer usually must not be set to point
directly to the top of the stack, but there must be 8 bytes reserved where the task
function will store its return address. As vbcc does not store the return address for a
task function (an OSEK task never returns, it has to call TerminateTask()), wasting
these 8 bytes can be eliminated.

6.2.4 Calculation of Task Contexts

Computation of the task contexts is done in a similar fashion to the experimental version
described in the previous chapter: The tasks will be translated and analyzed according
their priority — starting with the highest priority. All the registers used by the tasks
translated so far will be accumulated. Now the context of each task is the intersection
of the registers used by this task and all the registers used by all higher priority tasks
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so far. The following simple algorithm can be used to compute the minimized task
contexts Ci for a fully preemptive system with at most one task per priority. Thigh is
the task with highest priority and Tlow the task with lowest priority. Register set D is
used to keep track of all registers used by higher priority tasks.

D := ∅
for Ti := Thigh, ..., Tlow:

Translate Ti and compute:
R := {all registers used by Ti}

Ci := R ∩D
D := D ∪R

However, OSEK provides more complicated scheduling mechanisms. The following
facts had to be considered:

• Several tasks can share the same priority.

• OSEK supports preemptive as well as non-preemptive tasks.

• Tasks can wait for events (semaphores) and block.

• The priority of a task can be changed due to the priority ceiling protocol.

Tasks on the same Priority

Handling tasks on the same priority can be done by simply deferring step 5 in the
algorithm presented above. Instead, all tasks of the same priority are translated in
sequence and another register set P is used to accumulate all registers of all tasks of
the current priority. Only after the last task of this priority has been handled, P is
added to D (maxprio is the highest priority used by any task):

D := ∅
for n := maxprio, ..., 0:

P := ∅
∀Ti,prio(Ti) = n :

Translate Ti and compute:
R := {all registers used by Ti}

Ci := R ∩D
P := P ∪D

D := D ∪R

This algorithm takes account for the fact that tasks on the same priority can not
interrupt each other (unless one can wait for events which will be discussed below).

Non-preemptive Tasks

Furthermore, OSEK supports non-preemptive tasks. Such tasks will not be interrupted
when a task with higher priority gets active. They can, however, call a system function
(Schedule()) which will allow them to be preempted at this point if a task with higher
priority is ready. To handle this case, vbcc will not only compute the total set of
registers used by a task, but also the set of all registers that contain live values at a
call to Schedule(). Only those registers have to be considered for the context of a
non-preemptive task. This can yield big improvements in typical code patterns like the
following example of co-operative multi-tasking:
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TASK(T1)
{
while(1){
process_1();
Schedule(); /* allow preemption of higher priority task */

process_2();
Schedule(); /* allow preemption of higher priority task */

process_3();
Schedule(); /* allow preemption of higher priority task */

}
}

Few or no registers are live across the calls to Schedule() in this case. Note however,
that all the live registers at the call to Schedule() may contain registers that are used
further down the call-graph. Consider the following example:

TASK(T1)
{
/* alloc r1, r2 */

f();
...

}

TASK(T2)
{
/* alloc r1, r2, r3 */

f();
...

}

void f()
{
/* alloc r1 */

Schedule();
...
}

In function f() only one register r1 is live when Schedule() is called. However, the
context of non-preemptive task T1 also must contain r2 as this register was live when
f(), and therefore also Schedule(), was called. For task T2, r1, r2 and r3 may be part
of the context. This illustrates that local liveness information is not sufficient.

As vbcc translates each function exactly once, this information is passed top-down.
i.e. it will first translate f() and note that it has r1 live across a call to Schedule().
When T1 is translated, it is already known that f() calls Schedule() and the union
of r1 (from f()) and the currently live registers in T1 will be stored as the register set
live across a call to Schedule() in T1.

Waiting Tasks

While non-preemptive tasks and tasks sharing the same priority offer additional op-
portunities for optimization, i.e. they allow smaller task contexts, tasks waiting for
events introduce additional preemptions. Not modelling this mechanism might result
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in incorrectly small stack sizes rather than just suboptimal results. A task entering the
blocking state (by calling the WaitEvent() function) can effectively be preempted by
all tasks at this point, even if they have lower priority.

This case is handled very similar to calls to Schedule() from non-preemptive tasks.
For each task, the set of registers live across a call to WaitEvent() is computed. All
of those registers that are used by any other task have to be added to the context of
this task. Often only few registers will be live across a call to WaitEvent() in typical
examples like the following one:

TASK(T1)
{
while(1){
WaitEvent(mySignal);
/* handle signal */

...
}

}

Priority Changes

Calls to GetResource or ReleaseResource as well as different functions for disabling
interrupts can effectively change the priority of a task at run-time. While it would be
possible to use this information for further reduction of task contexts, this has not been
implemented.

All these mechanisms only restrict possible preemptions. It is only possible to raise
the priority of a task over its static priority. Also, this can only be done by the task
itself, i.e. when it is already running. Therefore, it can only lock out a higher priority
task for some time, but it can not preempt a task higher than its static priority.

To make use of this mechanism, it would be necessary to find the parts of code
between, for example, calls to GetResource and ReleaseResource. This is not a
trivial problem and no huge additional improvements are expected. Therefore, it has
been omitted and suboptimal results are obtained for such cases at the moment. It
may be an option for further research.

Final Algorithm

Combining the different extensions to the original algorithm mentioned in the previous
paragraphs, one obtains the following algorithm that has been included in vbcc to
compute task-contexts for general OSEK applications. The registers live across calls
to Schedule() and WaitEvent() are computed as Si and Wi when translating task i.
For a non-preemptive task, only registers that are contained in Si will be added to its
context. After all tasks have been translated and therefore all registers used by all tasks
are known, registers live across calls to WaitEvent() will be added to the corresponding
task’s context if they are used by any other task. This is necessary because a task could
be preempted by every other task when it calls WaitEvent().
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D := ∅
for n := maxprio, ..., 0

P := ∅
∀Ti,prio(Ti) = n :

translate Ti and compute:
Ri := {all registers used by Ti}
Si := {all registers live across Schedule()}
Wi := {all registers live across WaitEvent()}

if Ti non-preemptive, set
Ci := Si ∩D

else
Ci := Ri ∩D

P := P ∪Ri

D := D ∪ P

∀i : Ci := Ci ∪

Wi ∩
⋃
j 6=i

Rj


6.2.5 Inter-Task Register-Allocation

To avoid explosion of turn-around times, only simple inter-task register-allocation is
performed, much like in the stand-alone implementation (see section 5.3.3). Before
translating a task, a higher priority is assigned to registers that already have been used
by tasks with higher priority. Therefore, tasks on different priorities (which can usually
preempt each other) preferably get assigned different registers while tasks on the same
priority tend to share the same registers.

While this is a decent heuristic, it does not accurately model all types of task inter-
ference graphs that can occur in OSEK systems. Non-preemptive and waiting tasks are
not handled differently. Therefore, it is possible to construct cases where these heuris-
tics yield suboptimal results. There are still opportunities for small improvements.
Nevertheless, for many typical cases the results are very good.

6.2.6 Generation of Stacks

Most versions of ProOSEK store task contexts directly on the task stack when a task
is interrupted. This is a little bit more efficient than storing the contexts in separate
context-save-areas. Also, it has the advantage that sharing of task-contexts is done
automatically with sharing of task stacks. Tasks that can not preempt each other can
share their stacks as well as memory for their context.

For example, tasks on the same priority that do not call WaitEvent() can not
preempt each other. Similarly, non-preemptive tasks that do not call Schedule() or
WaitEvent() can share their stacks and contexts. The former case can be detected from
the configuration information contained in the OIL file. The task priorities as well as
assignment of events to tasks must be statically configured there (the case of a task
that has been assigned an event but does never wait for it, can be ignored). The latter
case can not be identifier from standard OIL attributes. Some OSEK implementations
provide additional proprietary attributes to specify such cases of non-preemptability.
They are, however, dangerous to use as it must be ensured that these attributes always
correctly reflect the current source code.

During system generation, the ProOSEK Configurator will calculate the stack size
for each task by adding the user stack size that is specified in the OIL file, the size of a
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task context and additional space that is needed for calling operating system functions.
An interference graph, based upon the information available in the OIL file, will be
created and optimized stacks are allocated. Where possible, tasks will share the same
stack space.

For the modified version, the entire calculation and generation of task stacks was
removed from the ProOSEK Configurator and is now handled inside the compiler.
The stack size needed by each task is computed using stack analysis and the size of
the minimized task contexts is added. No further space for calling operating system
functions is needed on the task stack (see below). An optimized stack allocation is then
calculated based on these stack sizes and the task information. It is basically identical
to the mechanism used in the original ProOSEK Configurator with the exception that
vbcc gets the information whether tasks call Schedule() or WaitEvent() directly from
the source code rather than from OIL attributes.

Therefore, user stack calculation, context minimization as well as determination of
optimal stack-sharing are done together in the compiler. The data structures needed by
ProOSEK will be emitted directly from the compiler during compilation of the system.

6.2.7 Context-Switch Code

When performing a context-switch, the original ProOSEK will basically always store
the same register set. There are a few variants as mentioned in section 5.2, but it does
not store a different context for every task. However, the compiler has allocated only
space for the smaller contexts now. Therefore, it is necessary to store for each task
only those registers that are contained in its minimized context.

The compiler will generate small subroutines for every task that load and store only
the corresponding registers. Also, a table of function pointers will be emitted. The
context-switch code of ProOSEK was completely rewritten to call the right routines for
saving/loading registers, based on the ID of the task that is preempted or continued.

Obviously, this increases code size somewhat, but the main objective of this thesis
is to reduce RAM requirements. This is reasonable as on-chip RAM is significantly
more expensive than ROM. Also, the additional code-size could be reduced by using
the following techniques:

• For a set of tasks with similar contexts, it is possible to use the union of these
contexts for all tasks in the set and share the routines for saving/restoring the
context. This enables fine-tuning between RAM and ROM requirements. As
RAM and ROM sizes of a certain microcontroller are fixed, the ability to perform
this tuning can be very useful when fitting an application to a certain chip.

• If task-contexts are subsets of another one, it may be possible to use the same
routines, just with different entry-points.

• Some architectures (e.g. ARM [8] or 68k [105]) have instructions which can
save/restore arbitrary register sets controlled by a bit-mask in the instruction
code. In such cases, the ROM overhead can be very small. The PowerPC offers
instructions that load or store all general purpose registers from n to 31. If possi-
ble, these instructions are used in the context saving routines generated by vbcc.
However, no sophisticated attempts have been made to further reduce the code
size of these routines because the main focus of this thesis lies in reducing RAM
size.
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6.2.8 System Calls and System Stack

So far it has been assumed that when a task is preempted, its context gets magically
saved and another task is dispatched. Of course, in practice the context-switch is
handled by some operating system code. This code, however, will use some stack
space and registers itself. This has to be considered when really implementing context
minimization.

There are some OSEK system calls that can not lead to rescheduling and are very
small. Those calls are usually inlined and use only very few registers and stack. They
can be handled simply as part of the task and viewed as application code for these
purposes. There are, however, also system calls that are more heavyweight and can
lead to a rescheduling.

To keep the RAM usage as small as possible, those ProOSEK system calls have
been attributed so that they can be handled specially by the compiler. When such a
function is called, vbcc will emit code to store the calling task’s context and switch to
a special stack for the operating system. As these system functions are executed with
interrupts disabled, this stack only has to exist once, no additional space has to be
added to the task stacks. Consequently, these system functions are not included in the
stack analysis of the tasks (they are assumed to require no stack at all).

One last point to consider is the register usage of those system functions. Although
the current task’s context is saved before entering such a system function, there is still
one problem left. When calculating the minimized context for each task, only registers
are included that can be destroyed by other tasks. However, some register might be
used by only one task and a system function. In that case the register would not be
saved in the task context, but nevertheless overwritten when that system function is
called.

To solve that problem, all registers that are used by any system function (that is
called by any task or ISR) as well as by a task are added to this task’s context. Each
register used by system functions will usually increase at most one context. If it is used,
for example, by several tasks of different priority (that can preempt each other), the
register is already contained in all contexts but the one of the highest priority task. If,
on the other hand, the tasks can not preempt each other, there stacks will usually be
shared anyway (there are some theoretical exceptions because there can be more than
one possibility to share the stacks).

6.2.9 Interrupts

Apart from tasks, OSEK also provides interrupt service routines that are usually trig-
gered by some hardware interrupt request. For the purposes of this thesis they can
be handled just like tasks. Comparable changes have been made to the handling of
interrupt service routines in ProOSEK.

6.3 Results

Some tests have been carried out to measure the savings that are possible in the real
OSEK implementation. For the examples that do not contain ISRs, the correct execu-
tion of the applications produced with this system has been tested on a chip simula-
tor. The examples requiring interrupts have been run on an evaluation board with a
MPC555 microcontroller.

Unfortunately real OSEK applications have not been available for testing. OSEK
has been in production use for only a few years now and the first OSEK applications that



130 CHAPTER 6. REAL OSEK IMPLEMENTATION

were built into cars are still in production. Obviously, car manufacturers and suppliers
do not publish their intellectual property. Therefore, only synthetic benchmarks and
examples that are used for demonstration and teaching purposes have been available
for tests at this point in time.

The RAM requirement for stacks and optimized contexts has been compared to
the requirements of the unmodified ProOSEK. The standard ProOSEK needs stack
usage information for every task specified in the OIL file. For the following tests, the
real stack size computed by vbcc has been used here because there was no information
available on how precise a programmer would have been able to calculate the stack
usage. Therefore, no savings due to precise analysis of task stack usage are included
in these tests. The savings that are obtained in these tests are due to the following
reasons:

• The compiler translates the top level task functions differently (no unneeded
saving of registers etc.).

• Some system calls are translated differently to switch to a different stack. Also,
they do not save unneeded registers at top level.

• The stack needed for the system calls is computed exactly and only for those
system calls that are actually used.

• Reduced task contexts are computed and used for every task. This is the most
important factor to reduce RAM usage.

6.3.1 Task Constellations

The previous chapter contains a table of different task combinations that were used
to illustrate the possible savings when using minimized task contexts depending on
the percentage of lightweight and heavyweight tasks. The theoretical results showed
huge saving if there are many lightweight tasks and still significant savings if there are
some lightweight tasks in the system (it should be noted that, for example, ISRs often
fall into the lightweight category). The results give an estimate of the savings that
can be obtained depending on the kind of application, but they assume a theoretical
implementation without any operating system overhead. In practice, however, tasks
will call operating system functions that will use registers and stack. Therefore, it has
to be tested how much of the theoretical savings are retained in a real implementation.

To get these results, the same task combinations as in table 5.1 have been converted
to real OSEK tasks. Each task was set to fully preemptive and was assigned a unique
priority. For the unmodified ProOSEK, the exact stack size was specified for each task.
Furthermore, calls to ActivateTask() and TerminateTask() have been added to each
task. Table 6.1 shows the results. Of course, the RAM usage is higher than in the
theoretical results. Also, the savings are somewhat smaller but still significant in all
cases. The savings in the theoretical best case scenarios consisting only of lightweight
tasks are a bit smaller due to the overhead of the operating system. More important,
however, are the savings for the scenarios with some lightweight and some heavyweight
tasks. Due to the other optimizations, the savings for those more realistic constellations
are even bigger than in the theoretical case without an operating system.

6.3.2 LED Example

This test case is delivered as an example application with ProOSEK. It controls a light
running from left to right and back again between positions that can be adjusted by
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Table 6.1: Benchmark results revisited
nrbuf nmm nint nall RAMstd RAMopt savings

10 0 0 0 2120 452 79%
0 10 0 0 4760 984 79%
0 0 10 0 2120 1396 34%
0 0 0 10 4760 3700 22%
2 2 2 4 3704 1900 49%
4 2 2 2 3176 1188 63%
4 4 2 0 3176 812 74%
6 0 4 0 2120 796 62%
0 6 0 4 4760 1972 59%
3 1 6 0 2384 1032 57%

33080 14232 57%

Table 6.2: LED Example Results
std. impl. opt. impl. savings

stack and context 328 208 37%
total RAM 400 280 30%

DIP switches on an evaluation board. This example is written to make best use of
ProOSEK features to create an executable requiring only a small amount of RAM.
An ISR is triggered by a timer interrupt and will activate periodic tasks to check the
switches and set the LEDs. Both tasks are configured as non-preemptive. Additionally,
a special ProOSEK attribute is set that tells the system generator that the tasks do
not call the OSEK function Schedule(). This allows the system generator to share the
stacks and contexts of those tasks. Furthermore, non-preemptive tasks need a smaller
stack in the default implementation of ProOSEK as caller-save registers do not have
to be saved. Table 6.2 shows the size needed for stack and contexts in the original
ProOSEK compared to the optimized implementation. The total RAM size of the
entire system (i.e. including the static data structures of the operating system) is also
included to illustrate the importance of the stack and context size.

6.3.3 Interior Lights

This test case simulates an ECU controlling the interior lights of a car on an evaluation
board. It is used for OSEK training courses. The lights are simulated by LEDs on the
board, and DIP switches are used to simulate door sensors and light switches. Like the
previous example, it uses non-preemptive tasks and an ISR. Additionally, this test case
uses several OSEK events and an extended task (which precludes stack sharing). Table
6.3 shows the results for this test case. Significant savings can be obtained because
vbcc detects for example that only few registers are live across a call to WaitEvent().

Table 6.3: Interior Lights Results
std. impl. opt. impl. savings

stack and context 484 264 45%
total RAM 570 350 39%
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Chapter 7

Conclusion and Future Work

This thesis has presented several mechanisms to reduce the RAM usage of systems us-
ing static operating systems by the use of advanced compilation techniques. Common
compiler optimizations have been examined regarding their impact on RAM consump-
tion. A high-level stack analysis has been implemented that easily obtains safe and
precise bounds for stack usage of application tasks. Safety margins can be eliminated
when results of static analysis are available. New optimization algorithms to reduce
the RAM needed to store contexts of preempted tasks have been developed and imple-
mented. By eliminating unnecessary storage for unused registers, task contexts can be
minimized.

The techniques proposed in this thesis have been implemented in a real production
quality compiler and several tests and comparisons have been made. The stack analysis
feature was compared with a commercial post link-time tool and showed clear benefits.
Optimization of task contexts and inter-task register-allocation can obtain large benefits
depending on the number of light-weight tasks in a system.

All techniques have been combined in a real world implementation working with
a commercial OSEK system. Tests on real hardware have shown that the algorithms
really work and all tricky low-level details can be handled. The new system does
not only offer increased usability and maintainability, but it also demonstrates that
significant reductions of RAM requirements can be achieved in practice.

There is, however, still room for further improvement. The stack analysis feature
could be enhanced by the capability to calculate stack requirements of simple inline-
assembly constructs. Only relatively simple heuristics for inter-task register-allocation
have been used. More ambitious algorithms could be researched. Support for other
static operating systems as well as different OSEK implementations could be imple-
mented. Whether more precise computation of task preemptability, e.g. analyzing
critical sections, could produce significant additional savings, is also still an open ques-
tion. Finally, more tests of complete ECUs would be most desirable. Currently, such
applications are universally up-to-date high-end technology that is out of reach for
publication, but in some time, real application code might become available. Unfor-
tunately, no reasonable OSEK benchmarks (e.g. like SPECCPU for general compiler
optimizations, see [131]) are available.
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